123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503 |
- // Copyright 2018 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- //go:build gc && !purego
- #include "textflag.h"
- // This implementation of Poly1305 uses the vector facility (vx)
- // to process up to 2 blocks (32 bytes) per iteration using an
- // algorithm based on the one described in:
- //
- // NEON crypto, Daniel J. Bernstein & Peter Schwabe
- // https://cryptojedi.org/papers/neoncrypto-20120320.pdf
- //
- // This algorithm uses 5 26-bit limbs to represent a 130-bit
- // value. These limbs are, for the most part, zero extended and
- // placed into 64-bit vector register elements. Each vector
- // register is 128-bits wide and so holds 2 of these elements.
- // Using 26-bit limbs allows us plenty of headroom to accommodate
- // accumulations before and after multiplication without
- // overflowing either 32-bits (before multiplication) or 64-bits
- // (after multiplication).
- //
- // In order to parallelise the operations required to calculate
- // the sum we use two separate accumulators and then sum those
- // in an extra final step. For compatibility with the generic
- // implementation we perform this summation at the end of every
- // updateVX call.
- //
- // To use two accumulators we must multiply the message blocks
- // by r² rather than r. Only the final message block should be
- // multiplied by r.
- //
- // Example:
- //
- // We want to calculate the sum (h) for a 64 byte message (m):
- //
- // h = m[0:16]r⁴ + m[16:32]r³ + m[32:48]r² + m[48:64]r
- //
- // To do this we split the calculation into the even indices
- // and odd indices of the message. These form our SIMD 'lanes':
- //
- // h = m[ 0:16]r⁴ + m[32:48]r² + <- lane 0
- // m[16:32]r³ + m[48:64]r <- lane 1
- //
- // To calculate this iteratively we refactor so that both lanes
- // are written in terms of r² and r:
- //
- // h = (m[ 0:16]r² + m[32:48])r² + <- lane 0
- // (m[16:32]r² + m[48:64])r <- lane 1
- // ^ ^
- // | coefficients for second iteration
- // coefficients for first iteration
- //
- // So in this case we would have two iterations. In the first
- // both lanes are multiplied by r². In the second only the
- // first lane is multiplied by r² and the second lane is
- // instead multiplied by r. This gives use the odd and even
- // powers of r that we need from the original equation.
- //
- // Notation:
- //
- // h - accumulator
- // r - key
- // m - message
- //
- // [a, b] - SIMD register holding two 64-bit values
- // [a, b, c, d] - SIMD register holding four 32-bit values
- // xᵢ[n] - limb n of variable x with bit width i
- //
- // Limbs are expressed in little endian order, so for 26-bit
- // limbs x₂₆[4] will be the most significant limb and x₂₆[0]
- // will be the least significant limb.
- // masking constants
- #define MOD24 V0 // [0x0000000000ffffff, 0x0000000000ffffff] - mask low 24-bits
- #define MOD26 V1 // [0x0000000003ffffff, 0x0000000003ffffff] - mask low 26-bits
- // expansion constants (see EXPAND macro)
- #define EX0 V2
- #define EX1 V3
- #define EX2 V4
- // key (r², r or 1 depending on context)
- #define R_0 V5
- #define R_1 V6
- #define R_2 V7
- #define R_3 V8
- #define R_4 V9
- // precalculated coefficients (5r², 5r or 0 depending on context)
- #define R5_1 V10
- #define R5_2 V11
- #define R5_3 V12
- #define R5_4 V13
- // message block (m)
- #define M_0 V14
- #define M_1 V15
- #define M_2 V16
- #define M_3 V17
- #define M_4 V18
- // accumulator (h)
- #define H_0 V19
- #define H_1 V20
- #define H_2 V21
- #define H_3 V22
- #define H_4 V23
- // temporary registers (for short-lived values)
- #define T_0 V24
- #define T_1 V25
- #define T_2 V26
- #define T_3 V27
- #define T_4 V28
- GLOBL ·constants<>(SB), RODATA, $0x30
- // EX0
- DATA ·constants<>+0x00(SB)/8, $0x0006050403020100
- DATA ·constants<>+0x08(SB)/8, $0x1016151413121110
- // EX1
- DATA ·constants<>+0x10(SB)/8, $0x060c0b0a09080706
- DATA ·constants<>+0x18(SB)/8, $0x161c1b1a19181716
- // EX2
- DATA ·constants<>+0x20(SB)/8, $0x0d0d0d0d0d0f0e0d
- DATA ·constants<>+0x28(SB)/8, $0x1d1d1d1d1d1f1e1d
- // MULTIPLY multiplies each lane of f and g, partially reduced
- // modulo 2¹³⁰ - 5. The result, h, consists of partial products
- // in each lane that need to be reduced further to produce the
- // final result.
- //
- // h₁₃₀ = (f₁₃₀g₁₃₀) % 2¹³⁰ + (5f₁₃₀g₁₃₀) / 2¹³⁰
- //
- // Note that the multiplication by 5 of the high bits is
- // achieved by precalculating the multiplication of four of the
- // g coefficients by 5. These are g51-g54.
- #define MULTIPLY(f0, f1, f2, f3, f4, g0, g1, g2, g3, g4, g51, g52, g53, g54, h0, h1, h2, h3, h4) \
- VMLOF f0, g0, h0 \
- VMLOF f0, g3, h3 \
- VMLOF f0, g1, h1 \
- VMLOF f0, g4, h4 \
- VMLOF f0, g2, h2 \
- VMLOF f1, g54, T_0 \
- VMLOF f1, g2, T_3 \
- VMLOF f1, g0, T_1 \
- VMLOF f1, g3, T_4 \
- VMLOF f1, g1, T_2 \
- VMALOF f2, g53, h0, h0 \
- VMALOF f2, g1, h3, h3 \
- VMALOF f2, g54, h1, h1 \
- VMALOF f2, g2, h4, h4 \
- VMALOF f2, g0, h2, h2 \
- VMALOF f3, g52, T_0, T_0 \
- VMALOF f3, g0, T_3, T_3 \
- VMALOF f3, g53, T_1, T_1 \
- VMALOF f3, g1, T_4, T_4 \
- VMALOF f3, g54, T_2, T_2 \
- VMALOF f4, g51, h0, h0 \
- VMALOF f4, g54, h3, h3 \
- VMALOF f4, g52, h1, h1 \
- VMALOF f4, g0, h4, h4 \
- VMALOF f4, g53, h2, h2 \
- VAG T_0, h0, h0 \
- VAG T_3, h3, h3 \
- VAG T_1, h1, h1 \
- VAG T_4, h4, h4 \
- VAG T_2, h2, h2
- // REDUCE performs the following carry operations in four
- // stages, as specified in Bernstein & Schwabe:
- //
- // 1: h₂₆[0]->h₂₆[1] h₂₆[3]->h₂₆[4]
- // 2: h₂₆[1]->h₂₆[2] h₂₆[4]->h₂₆[0]
- // 3: h₂₆[0]->h₂₆[1] h₂₆[2]->h₂₆[3]
- // 4: h₂₆[3]->h₂₆[4]
- //
- // The result is that all of the limbs are limited to 26-bits
- // except for h₂₆[1] and h₂₆[4] which are limited to 27-bits.
- //
- // Note that although each limb is aligned at 26-bit intervals
- // they may contain values that exceed 2²⁶ - 1, hence the need
- // to carry the excess bits in each limb.
- #define REDUCE(h0, h1, h2, h3, h4) \
- VESRLG $26, h0, T_0 \
- VESRLG $26, h3, T_1 \
- VN MOD26, h0, h0 \
- VN MOD26, h3, h3 \
- VAG T_0, h1, h1 \
- VAG T_1, h4, h4 \
- VESRLG $26, h1, T_2 \
- VESRLG $26, h4, T_3 \
- VN MOD26, h1, h1 \
- VN MOD26, h4, h4 \
- VESLG $2, T_3, T_4 \
- VAG T_3, T_4, T_4 \
- VAG T_2, h2, h2 \
- VAG T_4, h0, h0 \
- VESRLG $26, h2, T_0 \
- VESRLG $26, h0, T_1 \
- VN MOD26, h2, h2 \
- VN MOD26, h0, h0 \
- VAG T_0, h3, h3 \
- VAG T_1, h1, h1 \
- VESRLG $26, h3, T_2 \
- VN MOD26, h3, h3 \
- VAG T_2, h4, h4
- // EXPAND splits the 128-bit little-endian values in0 and in1
- // into 26-bit big-endian limbs and places the results into
- // the first and second lane of d₂₆[0:4] respectively.
- //
- // The EX0, EX1 and EX2 constants are arrays of byte indices
- // for permutation. The permutation both reverses the bytes
- // in the input and ensures the bytes are copied into the
- // destination limb ready to be shifted into their final
- // position.
- #define EXPAND(in0, in1, d0, d1, d2, d3, d4) \
- VPERM in0, in1, EX0, d0 \
- VPERM in0, in1, EX1, d2 \
- VPERM in0, in1, EX2, d4 \
- VESRLG $26, d0, d1 \
- VESRLG $30, d2, d3 \
- VESRLG $4, d2, d2 \
- VN MOD26, d0, d0 \ // [in0₂₆[0], in1₂₆[0]]
- VN MOD26, d3, d3 \ // [in0₂₆[3], in1₂₆[3]]
- VN MOD26, d1, d1 \ // [in0₂₆[1], in1₂₆[1]]
- VN MOD24, d4, d4 \ // [in0₂₆[4], in1₂₆[4]]
- VN MOD26, d2, d2 // [in0₂₆[2], in1₂₆[2]]
- // func updateVX(state *macState, msg []byte)
- TEXT ·updateVX(SB), NOSPLIT, $0
- MOVD state+0(FP), R1
- LMG msg+8(FP), R2, R3 // R2=msg_base, R3=msg_len
- // load EX0, EX1 and EX2
- MOVD $·constants<>(SB), R5
- VLM (R5), EX0, EX2
- // generate masks
- VGMG $(64-24), $63, MOD24 // [0x00ffffff, 0x00ffffff]
- VGMG $(64-26), $63, MOD26 // [0x03ffffff, 0x03ffffff]
- // load h (accumulator) and r (key) from state
- VZERO T_1 // [0, 0]
- VL 0(R1), T_0 // [h₆₄[0], h₆₄[1]]
- VLEG $0, 16(R1), T_1 // [h₆₄[2], 0]
- VL 24(R1), T_2 // [r₆₄[0], r₆₄[1]]
- VPDI $0, T_0, T_2, T_3 // [h₆₄[0], r₆₄[0]]
- VPDI $5, T_0, T_2, T_4 // [h₆₄[1], r₆₄[1]]
- // unpack h and r into 26-bit limbs
- // note: h₆₄[2] may have the low 3 bits set, so h₂₆[4] is a 27-bit value
- VN MOD26, T_3, H_0 // [h₂₆[0], r₂₆[0]]
- VZERO H_1 // [0, 0]
- VZERO H_3 // [0, 0]
- VGMG $(64-12-14), $(63-12), T_0 // [0x03fff000, 0x03fff000] - 26-bit mask with low 12 bits masked out
- VESLG $24, T_1, T_1 // [h₆₄[2]<<24, 0]
- VERIMG $-26&63, T_3, MOD26, H_1 // [h₂₆[1], r₂₆[1]]
- VESRLG $+52&63, T_3, H_2 // [h₂₆[2], r₂₆[2]] - low 12 bits only
- VERIMG $-14&63, T_4, MOD26, H_3 // [h₂₆[1], r₂₆[1]]
- VESRLG $40, T_4, H_4 // [h₂₆[4], r₂₆[4]] - low 24 bits only
- VERIMG $+12&63, T_4, T_0, H_2 // [h₂₆[2], r₂₆[2]] - complete
- VO T_1, H_4, H_4 // [h₂₆[4], r₂₆[4]] - complete
- // replicate r across all 4 vector elements
- VREPF $3, H_0, R_0 // [r₂₆[0], r₂₆[0], r₂₆[0], r₂₆[0]]
- VREPF $3, H_1, R_1 // [r₂₆[1], r₂₆[1], r₂₆[1], r₂₆[1]]
- VREPF $3, H_2, R_2 // [r₂₆[2], r₂₆[2], r₂₆[2], r₂₆[2]]
- VREPF $3, H_3, R_3 // [r₂₆[3], r₂₆[3], r₂₆[3], r₂₆[3]]
- VREPF $3, H_4, R_4 // [r₂₆[4], r₂₆[4], r₂₆[4], r₂₆[4]]
- // zero out lane 1 of h
- VLEIG $1, $0, H_0 // [h₂₆[0], 0]
- VLEIG $1, $0, H_1 // [h₂₆[1], 0]
- VLEIG $1, $0, H_2 // [h₂₆[2], 0]
- VLEIG $1, $0, H_3 // [h₂₆[3], 0]
- VLEIG $1, $0, H_4 // [h₂₆[4], 0]
- // calculate 5r (ignore least significant limb)
- VREPIF $5, T_0
- VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r₂₆[1], 5r₂₆[1], 5r₂₆[1]]
- VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r₂₆[2], 5r₂₆[2], 5r₂₆[2]]
- VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r₂₆[3], 5r₂₆[3], 5r₂₆[3]]
- VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r₂₆[4], 5r₂₆[4], 5r₂₆[4]]
- // skip r² calculation if we are only calculating one block
- CMPBLE R3, $16, skip
- // calculate r²
- MULTIPLY(R_0, R_1, R_2, R_3, R_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, M_0, M_1, M_2, M_3, M_4)
- REDUCE(M_0, M_1, M_2, M_3, M_4)
- VGBM $0x0f0f, T_0
- VERIMG $0, M_0, T_0, R_0 // [r₂₆[0], r²₂₆[0], r₂₆[0], r²₂₆[0]]
- VERIMG $0, M_1, T_0, R_1 // [r₂₆[1], r²₂₆[1], r₂₆[1], r²₂₆[1]]
- VERIMG $0, M_2, T_0, R_2 // [r₂₆[2], r²₂₆[2], r₂₆[2], r²₂₆[2]]
- VERIMG $0, M_3, T_0, R_3 // [r₂₆[3], r²₂₆[3], r₂₆[3], r²₂₆[3]]
- VERIMG $0, M_4, T_0, R_4 // [r₂₆[4], r²₂₆[4], r₂₆[4], r²₂₆[4]]
- // calculate 5r² (ignore least significant limb)
- VREPIF $5, T_0
- VMLF T_0, R_1, R5_1 // [5r₂₆[1], 5r²₂₆[1], 5r₂₆[1], 5r²₂₆[1]]
- VMLF T_0, R_2, R5_2 // [5r₂₆[2], 5r²₂₆[2], 5r₂₆[2], 5r²₂₆[2]]
- VMLF T_0, R_3, R5_3 // [5r₂₆[3], 5r²₂₆[3], 5r₂₆[3], 5r²₂₆[3]]
- VMLF T_0, R_4, R5_4 // [5r₂₆[4], 5r²₂₆[4], 5r₂₆[4], 5r²₂₆[4]]
- loop:
- CMPBLE R3, $32, b2 // 2 or fewer blocks remaining, need to change key coefficients
- // load next 2 blocks from message
- VLM (R2), T_0, T_1
- // update message slice
- SUB $32, R3
- MOVD $32(R2), R2
- // unpack message blocks into 26-bit big-endian limbs
- EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
- // add 2¹²⁸ to each message block value
- VLEIB $4, $1, M_4
- VLEIB $12, $1, M_4
- multiply:
- // accumulate the incoming message
- VAG H_0, M_0, M_0
- VAG H_3, M_3, M_3
- VAG H_1, M_1, M_1
- VAG H_4, M_4, M_4
- VAG H_2, M_2, M_2
- // multiply the accumulator by the key coefficient
- MULTIPLY(M_0, M_1, M_2, M_3, M_4, R_0, R_1, R_2, R_3, R_4, R5_1, R5_2, R5_3, R5_4, H_0, H_1, H_2, H_3, H_4)
- // carry and partially reduce the partial products
- REDUCE(H_0, H_1, H_2, H_3, H_4)
- CMPBNE R3, $0, loop
- finish:
- // sum lane 0 and lane 1 and put the result in lane 1
- VZERO T_0
- VSUMQG H_0, T_0, H_0
- VSUMQG H_3, T_0, H_3
- VSUMQG H_1, T_0, H_1
- VSUMQG H_4, T_0, H_4
- VSUMQG H_2, T_0, H_2
- // reduce again after summation
- // TODO(mundaym): there might be a more efficient way to do this
- // now that we only have 1 active lane. For example, we could
- // simultaneously pack the values as we reduce them.
- REDUCE(H_0, H_1, H_2, H_3, H_4)
- // carry h[1] through to h[4] so that only h[4] can exceed 2²⁶ - 1
- // TODO(mundaym): in testing this final carry was unnecessary.
- // Needs a proof before it can be removed though.
- VESRLG $26, H_1, T_1
- VN MOD26, H_1, H_1
- VAQ T_1, H_2, H_2
- VESRLG $26, H_2, T_2
- VN MOD26, H_2, H_2
- VAQ T_2, H_3, H_3
- VESRLG $26, H_3, T_3
- VN MOD26, H_3, H_3
- VAQ T_3, H_4, H_4
- // h is now < 2(2¹³⁰ - 5)
- // Pack each lane in h₂₆[0:4] into h₁₂₈[0:1].
- VESLG $26, H_1, H_1
- VESLG $26, H_3, H_3
- VO H_0, H_1, H_0
- VO H_2, H_3, H_2
- VESLG $4, H_2, H_2
- VLEIB $7, $48, H_1
- VSLB H_1, H_2, H_2
- VO H_0, H_2, H_0
- VLEIB $7, $104, H_1
- VSLB H_1, H_4, H_3
- VO H_3, H_0, H_0
- VLEIB $7, $24, H_1
- VSRLB H_1, H_4, H_1
- // update state
- VSTEG $1, H_0, 0(R1)
- VSTEG $0, H_0, 8(R1)
- VSTEG $1, H_1, 16(R1)
- RET
- b2: // 2 or fewer blocks remaining
- CMPBLE R3, $16, b1
- // Load the 2 remaining blocks (17-32 bytes remaining).
- MOVD $-17(R3), R0 // index of final byte to load modulo 16
- VL (R2), T_0 // load full 16 byte block
- VLL R0, 16(R2), T_1 // load final (possibly partial) block and pad with zeros to 16 bytes
- // The Poly1305 algorithm requires that a 1 bit be appended to
- // each message block. If the final block is less than 16 bytes
- // long then it is easiest to insert the 1 before the message
- // block is split into 26-bit limbs. If, on the other hand, the
- // final message block is 16 bytes long then we append the 1 bit
- // after expansion as normal.
- MOVBZ $1, R0
- MOVD $-16(R3), R3 // index of byte in last block to insert 1 at (could be 16)
- CMPBEQ R3, $16, 2(PC) // skip the insertion if the final block is 16 bytes long
- VLVGB R3, R0, T_1 // insert 1 into the byte at index R3
- // Split both blocks into 26-bit limbs in the appropriate lanes.
- EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
- // Append a 1 byte to the end of the second to last block.
- VLEIB $4, $1, M_4
- // Append a 1 byte to the end of the last block only if it is a
- // full 16 byte block.
- CMPBNE R3, $16, 2(PC)
- VLEIB $12, $1, M_4
- // Finally, set up the coefficients for the final multiplication.
- // We have previously saved r and 5r in the 32-bit even indexes
- // of the R_[0-4] and R5_[1-4] coefficient registers.
- //
- // We want lane 0 to be multiplied by r² so that can be kept the
- // same. We want lane 1 to be multiplied by r so we need to move
- // the saved r value into the 32-bit odd index in lane 1 by
- // rotating the 64-bit lane by 32.
- VGBM $0x00ff, T_0 // [0, 0xffffffffffffffff] - mask lane 1 only
- VERIMG $32, R_0, T_0, R_0 // [_, r²₂₆[0], _, r₂₆[0]]
- VERIMG $32, R_1, T_0, R_1 // [_, r²₂₆[1], _, r₂₆[1]]
- VERIMG $32, R_2, T_0, R_2 // [_, r²₂₆[2], _, r₂₆[2]]
- VERIMG $32, R_3, T_0, R_3 // [_, r²₂₆[3], _, r₂₆[3]]
- VERIMG $32, R_4, T_0, R_4 // [_, r²₂₆[4], _, r₂₆[4]]
- VERIMG $32, R5_1, T_0, R5_1 // [_, 5r²₂₆[1], _, 5r₂₆[1]]
- VERIMG $32, R5_2, T_0, R5_2 // [_, 5r²₂₆[2], _, 5r₂₆[2]]
- VERIMG $32, R5_3, T_0, R5_3 // [_, 5r²₂₆[3], _, 5r₂₆[3]]
- VERIMG $32, R5_4, T_0, R5_4 // [_, 5r²₂₆[4], _, 5r₂₆[4]]
- MOVD $0, R3
- BR multiply
- skip:
- CMPBEQ R3, $0, finish
- b1: // 1 block remaining
- // Load the final block (1-16 bytes). This will be placed into
- // lane 0.
- MOVD $-1(R3), R0
- VLL R0, (R2), T_0 // pad to 16 bytes with zeros
- // The Poly1305 algorithm requires that a 1 bit be appended to
- // each message block. If the final block is less than 16 bytes
- // long then it is easiest to insert the 1 before the message
- // block is split into 26-bit limbs. If, on the other hand, the
- // final message block is 16 bytes long then we append the 1 bit
- // after expansion as normal.
- MOVBZ $1, R0
- CMPBEQ R3, $16, 2(PC)
- VLVGB R3, R0, T_0
- // Set the message block in lane 1 to the value 0 so that it
- // can be accumulated without affecting the final result.
- VZERO T_1
- // Split the final message block into 26-bit limbs in lane 0.
- // Lane 1 will be contain 0.
- EXPAND(T_0, T_1, M_0, M_1, M_2, M_3, M_4)
- // Append a 1 byte to the end of the last block only if it is a
- // full 16 byte block.
- CMPBNE R3, $16, 2(PC)
- VLEIB $4, $1, M_4
- // We have previously saved r and 5r in the 32-bit even indexes
- // of the R_[0-4] and R5_[1-4] coefficient registers.
- //
- // We want lane 0 to be multiplied by r so we need to move the
- // saved r value into the 32-bit odd index in lane 0. We want
- // lane 1 to be set to the value 1. This makes multiplication
- // a no-op. We do this by setting lane 1 in every register to 0
- // and then just setting the 32-bit index 3 in R_0 to 1.
- VZERO T_0
- MOVD $0, R0
- MOVD $0x10111213, R12
- VLVGP R12, R0, T_1 // [_, 0x10111213, _, 0x00000000]
- VPERM T_0, R_0, T_1, R_0 // [_, r₂₆[0], _, 0]
- VPERM T_0, R_1, T_1, R_1 // [_, r₂₆[1], _, 0]
- VPERM T_0, R_2, T_1, R_2 // [_, r₂₆[2], _, 0]
- VPERM T_0, R_3, T_1, R_3 // [_, r₂₆[3], _, 0]
- VPERM T_0, R_4, T_1, R_4 // [_, r₂₆[4], _, 0]
- VPERM T_0, R5_1, T_1, R5_1 // [_, 5r₂₆[1], _, 0]
- VPERM T_0, R5_2, T_1, R5_2 // [_, 5r₂₆[2], _, 0]
- VPERM T_0, R5_3, T_1, R5_3 // [_, 5r₂₆[3], _, 0]
- VPERM T_0, R5_4, T_1, R5_4 // [_, 5r₂₆[4], _, 0]
- // Set the value of lane 1 to be 1.
- VLEIF $3, $1, R_0 // [_, r₂₆[0], _, 1]
- MOVD $0, R3
- BR multiply
|