legacy_message.go 16 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512
  1. // Copyright 2018 The Go Authors. All rights reserved.
  2. // Use of this source code is governed by a BSD-style
  3. // license that can be found in the LICENSE file.
  4. package impl
  5. import (
  6. "fmt"
  7. "reflect"
  8. "strings"
  9. "sync"
  10. "google.golang.org/protobuf/internal/descopts"
  11. ptag "google.golang.org/protobuf/internal/encoding/tag"
  12. "google.golang.org/protobuf/internal/errors"
  13. "google.golang.org/protobuf/internal/filedesc"
  14. "google.golang.org/protobuf/internal/strs"
  15. "google.golang.org/protobuf/reflect/protoreflect"
  16. pref "google.golang.org/protobuf/reflect/protoreflect"
  17. "google.golang.org/protobuf/runtime/protoiface"
  18. piface "google.golang.org/protobuf/runtime/protoiface"
  19. )
  20. // legacyWrapMessage wraps v as a protoreflect.Message,
  21. // where v must be a *struct kind and not implement the v2 API already.
  22. func legacyWrapMessage(v reflect.Value) pref.Message {
  23. typ := v.Type()
  24. if typ.Kind() != reflect.Ptr || typ.Elem().Kind() != reflect.Struct {
  25. return aberrantMessage{v: v}
  26. }
  27. mt := legacyLoadMessageInfo(typ, "")
  28. return mt.MessageOf(v.Interface())
  29. }
  30. // legacyLoadMessageType dynamically loads a protoreflect.Type for t,
  31. // where t must be not implement the v2 API already.
  32. // The provided name is used if it cannot be determined from the message.
  33. func legacyLoadMessageType(t reflect.Type, name pref.FullName) protoreflect.MessageType {
  34. if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
  35. return aberrantMessageType{t}
  36. }
  37. return legacyLoadMessageInfo(t, name)
  38. }
  39. var legacyMessageTypeCache sync.Map // map[reflect.Type]*MessageInfo
  40. // legacyLoadMessageInfo dynamically loads a *MessageInfo for t,
  41. // where t must be a *struct kind and not implement the v2 API already.
  42. // The provided name is used if it cannot be determined from the message.
  43. func legacyLoadMessageInfo(t reflect.Type, name pref.FullName) *MessageInfo {
  44. // Fast-path: check if a MessageInfo is cached for this concrete type.
  45. if mt, ok := legacyMessageTypeCache.Load(t); ok {
  46. return mt.(*MessageInfo)
  47. }
  48. // Slow-path: derive message descriptor and initialize MessageInfo.
  49. mi := &MessageInfo{
  50. Desc: legacyLoadMessageDesc(t, name),
  51. GoReflectType: t,
  52. }
  53. v := reflect.Zero(t).Interface()
  54. if _, ok := v.(legacyMarshaler); ok {
  55. mi.methods.Marshal = legacyMarshal
  56. // We have no way to tell whether the type's Marshal method
  57. // supports deterministic serialization or not, but this
  58. // preserves the v1 implementation's behavior of always
  59. // calling Marshal methods when present.
  60. mi.methods.Flags |= piface.SupportMarshalDeterministic
  61. }
  62. if _, ok := v.(legacyUnmarshaler); ok {
  63. mi.methods.Unmarshal = legacyUnmarshal
  64. }
  65. if _, ok := v.(legacyMerger); ok {
  66. mi.methods.Merge = legacyMerge
  67. }
  68. if mi, ok := legacyMessageTypeCache.LoadOrStore(t, mi); ok {
  69. return mi.(*MessageInfo)
  70. }
  71. return mi
  72. }
  73. var legacyMessageDescCache sync.Map // map[reflect.Type]protoreflect.MessageDescriptor
  74. // LegacyLoadMessageDesc returns an MessageDescriptor derived from the Go type,
  75. // which must be a *struct kind and not implement the v2 API already.
  76. //
  77. // This is exported for testing purposes.
  78. func LegacyLoadMessageDesc(t reflect.Type) pref.MessageDescriptor {
  79. return legacyLoadMessageDesc(t, "")
  80. }
  81. func legacyLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
  82. // Fast-path: check if a MessageDescriptor is cached for this concrete type.
  83. if mi, ok := legacyMessageDescCache.Load(t); ok {
  84. return mi.(pref.MessageDescriptor)
  85. }
  86. // Slow-path: initialize MessageDescriptor from the raw descriptor.
  87. mv := reflect.Zero(t).Interface()
  88. if _, ok := mv.(pref.ProtoMessage); ok {
  89. panic(fmt.Sprintf("%v already implements proto.Message", t))
  90. }
  91. mdV1, ok := mv.(messageV1)
  92. if !ok {
  93. return aberrantLoadMessageDesc(t, name)
  94. }
  95. // If this is a dynamic message type where there isn't a 1-1 mapping between
  96. // Go and protobuf types, calling the Descriptor method on the zero value of
  97. // the message type isn't likely to work. If it panics, swallow the panic and
  98. // continue as if the Descriptor method wasn't present.
  99. b, idxs := func() ([]byte, []int) {
  100. defer func() {
  101. recover()
  102. }()
  103. return mdV1.Descriptor()
  104. }()
  105. if b == nil {
  106. return aberrantLoadMessageDesc(t, name)
  107. }
  108. // If the Go type has no fields, then this might be a proto3 empty message
  109. // from before the size cache was added. If there are any fields, check to
  110. // see that at least one of them looks like something we generated.
  111. if nfield := t.Elem().NumField(); nfield > 0 {
  112. hasProtoField := false
  113. for i := 0; i < nfield; i++ {
  114. f := t.Elem().Field(i)
  115. if f.Tag.Get("protobuf") != "" || f.Tag.Get("protobuf_oneof") != "" || strings.HasPrefix(f.Name, "XXX_") {
  116. hasProtoField = true
  117. break
  118. }
  119. }
  120. if !hasProtoField {
  121. return aberrantLoadMessageDesc(t, name)
  122. }
  123. }
  124. md := legacyLoadFileDesc(b).Messages().Get(idxs[0])
  125. for _, i := range idxs[1:] {
  126. md = md.Messages().Get(i)
  127. }
  128. if name != "" && md.FullName() != name {
  129. panic(fmt.Sprintf("mismatching message name: got %v, want %v", md.FullName(), name))
  130. }
  131. if md, ok := legacyMessageDescCache.LoadOrStore(t, md); ok {
  132. return md.(protoreflect.MessageDescriptor)
  133. }
  134. return md
  135. }
  136. var (
  137. aberrantMessageDescLock sync.Mutex
  138. aberrantMessageDescCache map[reflect.Type]protoreflect.MessageDescriptor
  139. )
  140. // aberrantLoadMessageDesc returns an MessageDescriptor derived from the Go type,
  141. // which must not implement protoreflect.ProtoMessage or messageV1.
  142. //
  143. // This is a best-effort derivation of the message descriptor using the protobuf
  144. // tags on the struct fields.
  145. func aberrantLoadMessageDesc(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
  146. aberrantMessageDescLock.Lock()
  147. defer aberrantMessageDescLock.Unlock()
  148. if aberrantMessageDescCache == nil {
  149. aberrantMessageDescCache = make(map[reflect.Type]protoreflect.MessageDescriptor)
  150. }
  151. return aberrantLoadMessageDescReentrant(t, name)
  152. }
  153. func aberrantLoadMessageDescReentrant(t reflect.Type, name pref.FullName) pref.MessageDescriptor {
  154. // Fast-path: check if an MessageDescriptor is cached for this concrete type.
  155. if md, ok := aberrantMessageDescCache[t]; ok {
  156. return md
  157. }
  158. // Slow-path: construct a descriptor from the Go struct type (best-effort).
  159. // Cache the MessageDescriptor early on so that we can resolve internal
  160. // cyclic references.
  161. md := &filedesc.Message{L2: new(filedesc.MessageL2)}
  162. md.L0.FullName = aberrantDeriveMessageName(t, name)
  163. md.L0.ParentFile = filedesc.SurrogateProto2
  164. aberrantMessageDescCache[t] = md
  165. if t.Kind() != reflect.Ptr || t.Elem().Kind() != reflect.Struct {
  166. return md
  167. }
  168. // Try to determine if the message is using proto3 by checking scalars.
  169. for i := 0; i < t.Elem().NumField(); i++ {
  170. f := t.Elem().Field(i)
  171. if tag := f.Tag.Get("protobuf"); tag != "" {
  172. switch f.Type.Kind() {
  173. case reflect.Bool, reflect.Int32, reflect.Int64, reflect.Uint32, reflect.Uint64, reflect.Float32, reflect.Float64, reflect.String:
  174. md.L0.ParentFile = filedesc.SurrogateProto3
  175. }
  176. for _, s := range strings.Split(tag, ",") {
  177. if s == "proto3" {
  178. md.L0.ParentFile = filedesc.SurrogateProto3
  179. }
  180. }
  181. }
  182. }
  183. // Obtain a list of oneof wrapper types.
  184. var oneofWrappers []reflect.Type
  185. for _, method := range []string{"XXX_OneofFuncs", "XXX_OneofWrappers"} {
  186. if fn, ok := t.MethodByName(method); ok {
  187. for _, v := range fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))}) {
  188. if vs, ok := v.Interface().([]interface{}); ok {
  189. for _, v := range vs {
  190. oneofWrappers = append(oneofWrappers, reflect.TypeOf(v))
  191. }
  192. }
  193. }
  194. }
  195. }
  196. // Obtain a list of the extension ranges.
  197. if fn, ok := t.MethodByName("ExtensionRangeArray"); ok {
  198. vs := fn.Func.Call([]reflect.Value{reflect.Zero(fn.Type.In(0))})[0]
  199. for i := 0; i < vs.Len(); i++ {
  200. v := vs.Index(i)
  201. md.L2.ExtensionRanges.List = append(md.L2.ExtensionRanges.List, [2]pref.FieldNumber{
  202. pref.FieldNumber(v.FieldByName("Start").Int()),
  203. pref.FieldNumber(v.FieldByName("End").Int() + 1),
  204. })
  205. md.L2.ExtensionRangeOptions = append(md.L2.ExtensionRangeOptions, nil)
  206. }
  207. }
  208. // Derive the message fields by inspecting the struct fields.
  209. for i := 0; i < t.Elem().NumField(); i++ {
  210. f := t.Elem().Field(i)
  211. if tag := f.Tag.Get("protobuf"); tag != "" {
  212. tagKey := f.Tag.Get("protobuf_key")
  213. tagVal := f.Tag.Get("protobuf_val")
  214. aberrantAppendField(md, f.Type, tag, tagKey, tagVal)
  215. }
  216. if tag := f.Tag.Get("protobuf_oneof"); tag != "" {
  217. n := len(md.L2.Oneofs.List)
  218. md.L2.Oneofs.List = append(md.L2.Oneofs.List, filedesc.Oneof{})
  219. od := &md.L2.Oneofs.List[n]
  220. od.L0.FullName = md.FullName().Append(pref.Name(tag))
  221. od.L0.ParentFile = md.L0.ParentFile
  222. od.L0.Parent = md
  223. od.L0.Index = n
  224. for _, t := range oneofWrappers {
  225. if t.Implements(f.Type) {
  226. f := t.Elem().Field(0)
  227. if tag := f.Tag.Get("protobuf"); tag != "" {
  228. aberrantAppendField(md, f.Type, tag, "", "")
  229. fd := &md.L2.Fields.List[len(md.L2.Fields.List)-1]
  230. fd.L1.ContainingOneof = od
  231. od.L1.Fields.List = append(od.L1.Fields.List, fd)
  232. }
  233. }
  234. }
  235. }
  236. }
  237. return md
  238. }
  239. func aberrantDeriveMessageName(t reflect.Type, name pref.FullName) pref.FullName {
  240. if name.IsValid() {
  241. return name
  242. }
  243. func() {
  244. defer func() { recover() }() // swallow possible nil panics
  245. if m, ok := reflect.Zero(t).Interface().(interface{ XXX_MessageName() string }); ok {
  246. name = pref.FullName(m.XXX_MessageName())
  247. }
  248. }()
  249. if name.IsValid() {
  250. return name
  251. }
  252. if t.Kind() == reflect.Ptr {
  253. t = t.Elem()
  254. }
  255. return AberrantDeriveFullName(t)
  256. }
  257. func aberrantAppendField(md *filedesc.Message, goType reflect.Type, tag, tagKey, tagVal string) {
  258. t := goType
  259. isOptional := t.Kind() == reflect.Ptr && t.Elem().Kind() != reflect.Struct
  260. isRepeated := t.Kind() == reflect.Slice && t.Elem().Kind() != reflect.Uint8
  261. if isOptional || isRepeated {
  262. t = t.Elem()
  263. }
  264. fd := ptag.Unmarshal(tag, t, placeholderEnumValues{}).(*filedesc.Field)
  265. // Append field descriptor to the message.
  266. n := len(md.L2.Fields.List)
  267. md.L2.Fields.List = append(md.L2.Fields.List, *fd)
  268. fd = &md.L2.Fields.List[n]
  269. fd.L0.FullName = md.FullName().Append(fd.Name())
  270. fd.L0.ParentFile = md.L0.ParentFile
  271. fd.L0.Parent = md
  272. fd.L0.Index = n
  273. if fd.L1.IsWeak || fd.L1.HasPacked {
  274. fd.L1.Options = func() pref.ProtoMessage {
  275. opts := descopts.Field.ProtoReflect().New()
  276. if fd.L1.IsWeak {
  277. opts.Set(opts.Descriptor().Fields().ByName("weak"), protoreflect.ValueOfBool(true))
  278. }
  279. if fd.L1.HasPacked {
  280. opts.Set(opts.Descriptor().Fields().ByName("packed"), protoreflect.ValueOfBool(fd.L1.IsPacked))
  281. }
  282. return opts.Interface()
  283. }
  284. }
  285. // Populate Enum and Message.
  286. if fd.Enum() == nil && fd.Kind() == pref.EnumKind {
  287. switch v := reflect.Zero(t).Interface().(type) {
  288. case pref.Enum:
  289. fd.L1.Enum = v.Descriptor()
  290. default:
  291. fd.L1.Enum = LegacyLoadEnumDesc(t)
  292. }
  293. }
  294. if fd.Message() == nil && (fd.Kind() == pref.MessageKind || fd.Kind() == pref.GroupKind) {
  295. switch v := reflect.Zero(t).Interface().(type) {
  296. case pref.ProtoMessage:
  297. fd.L1.Message = v.ProtoReflect().Descriptor()
  298. case messageV1:
  299. fd.L1.Message = LegacyLoadMessageDesc(t)
  300. default:
  301. if t.Kind() == reflect.Map {
  302. n := len(md.L1.Messages.List)
  303. md.L1.Messages.List = append(md.L1.Messages.List, filedesc.Message{L2: new(filedesc.MessageL2)})
  304. md2 := &md.L1.Messages.List[n]
  305. md2.L0.FullName = md.FullName().Append(pref.Name(strs.MapEntryName(string(fd.Name()))))
  306. md2.L0.ParentFile = md.L0.ParentFile
  307. md2.L0.Parent = md
  308. md2.L0.Index = n
  309. md2.L1.IsMapEntry = true
  310. md2.L2.Options = func() pref.ProtoMessage {
  311. opts := descopts.Message.ProtoReflect().New()
  312. opts.Set(opts.Descriptor().Fields().ByName("map_entry"), protoreflect.ValueOfBool(true))
  313. return opts.Interface()
  314. }
  315. aberrantAppendField(md2, t.Key(), tagKey, "", "")
  316. aberrantAppendField(md2, t.Elem(), tagVal, "", "")
  317. fd.L1.Message = md2
  318. break
  319. }
  320. fd.L1.Message = aberrantLoadMessageDescReentrant(t, "")
  321. }
  322. }
  323. }
  324. type placeholderEnumValues struct {
  325. protoreflect.EnumValueDescriptors
  326. }
  327. func (placeholderEnumValues) ByNumber(n pref.EnumNumber) pref.EnumValueDescriptor {
  328. return filedesc.PlaceholderEnumValue(pref.FullName(fmt.Sprintf("UNKNOWN_%d", n)))
  329. }
  330. // legacyMarshaler is the proto.Marshaler interface superseded by protoiface.Methoder.
  331. type legacyMarshaler interface {
  332. Marshal() ([]byte, error)
  333. }
  334. // legacyUnmarshaler is the proto.Unmarshaler interface superseded by protoiface.Methoder.
  335. type legacyUnmarshaler interface {
  336. Unmarshal([]byte) error
  337. }
  338. // legacyMerger is the proto.Merger interface superseded by protoiface.Methoder.
  339. type legacyMerger interface {
  340. Merge(protoiface.MessageV1)
  341. }
  342. var aberrantProtoMethods = &piface.Methods{
  343. Marshal: legacyMarshal,
  344. Unmarshal: legacyUnmarshal,
  345. Merge: legacyMerge,
  346. // We have no way to tell whether the type's Marshal method
  347. // supports deterministic serialization or not, but this
  348. // preserves the v1 implementation's behavior of always
  349. // calling Marshal methods when present.
  350. Flags: piface.SupportMarshalDeterministic,
  351. }
  352. func legacyMarshal(in piface.MarshalInput) (piface.MarshalOutput, error) {
  353. v := in.Message.(unwrapper).protoUnwrap()
  354. marshaler, ok := v.(legacyMarshaler)
  355. if !ok {
  356. return piface.MarshalOutput{}, errors.New("%T does not implement Marshal", v)
  357. }
  358. out, err := marshaler.Marshal()
  359. if in.Buf != nil {
  360. out = append(in.Buf, out...)
  361. }
  362. return piface.MarshalOutput{
  363. Buf: out,
  364. }, err
  365. }
  366. func legacyUnmarshal(in piface.UnmarshalInput) (piface.UnmarshalOutput, error) {
  367. v := in.Message.(unwrapper).protoUnwrap()
  368. unmarshaler, ok := v.(legacyUnmarshaler)
  369. if !ok {
  370. return piface.UnmarshalOutput{}, errors.New("%T does not implement Marshal", v)
  371. }
  372. return piface.UnmarshalOutput{}, unmarshaler.Unmarshal(in.Buf)
  373. }
  374. func legacyMerge(in piface.MergeInput) piface.MergeOutput {
  375. dstv := in.Destination.(unwrapper).protoUnwrap()
  376. merger, ok := dstv.(legacyMerger)
  377. if !ok {
  378. return piface.MergeOutput{}
  379. }
  380. merger.Merge(Export{}.ProtoMessageV1Of(in.Source))
  381. return piface.MergeOutput{Flags: piface.MergeComplete}
  382. }
  383. // aberrantMessageType implements MessageType for all types other than pointer-to-struct.
  384. type aberrantMessageType struct {
  385. t reflect.Type
  386. }
  387. func (mt aberrantMessageType) New() pref.Message {
  388. return aberrantMessage{reflect.Zero(mt.t)}
  389. }
  390. func (mt aberrantMessageType) Zero() pref.Message {
  391. return aberrantMessage{reflect.Zero(mt.t)}
  392. }
  393. func (mt aberrantMessageType) GoType() reflect.Type {
  394. return mt.t
  395. }
  396. func (mt aberrantMessageType) Descriptor() pref.MessageDescriptor {
  397. return LegacyLoadMessageDesc(mt.t)
  398. }
  399. // aberrantMessage implements Message for all types other than pointer-to-struct.
  400. //
  401. // When the underlying type implements legacyMarshaler or legacyUnmarshaler,
  402. // the aberrant Message can be marshaled or unmarshaled. Otherwise, there is
  403. // not much that can be done with values of this type.
  404. type aberrantMessage struct {
  405. v reflect.Value
  406. }
  407. func (m aberrantMessage) ProtoReflect() pref.Message {
  408. return m
  409. }
  410. func (m aberrantMessage) Descriptor() pref.MessageDescriptor {
  411. return LegacyLoadMessageDesc(m.v.Type())
  412. }
  413. func (m aberrantMessage) Type() pref.MessageType {
  414. return aberrantMessageType{m.v.Type()}
  415. }
  416. func (m aberrantMessage) New() pref.Message {
  417. return aberrantMessage{reflect.Zero(m.v.Type())}
  418. }
  419. func (m aberrantMessage) Interface() pref.ProtoMessage {
  420. return m
  421. }
  422. func (m aberrantMessage) Range(f func(pref.FieldDescriptor, pref.Value) bool) {
  423. }
  424. func (m aberrantMessage) Has(pref.FieldDescriptor) bool {
  425. panic("invalid field descriptor")
  426. }
  427. func (m aberrantMessage) Clear(pref.FieldDescriptor) {
  428. panic("invalid field descriptor")
  429. }
  430. func (m aberrantMessage) Get(pref.FieldDescriptor) pref.Value {
  431. panic("invalid field descriptor")
  432. }
  433. func (m aberrantMessage) Set(pref.FieldDescriptor, pref.Value) {
  434. panic("invalid field descriptor")
  435. }
  436. func (m aberrantMessage) Mutable(pref.FieldDescriptor) pref.Value {
  437. panic("invalid field descriptor")
  438. }
  439. func (m aberrantMessage) NewField(pref.FieldDescriptor) pref.Value {
  440. panic("invalid field descriptor")
  441. }
  442. func (m aberrantMessage) WhichOneof(pref.OneofDescriptor) pref.FieldDescriptor {
  443. panic("invalid oneof descriptor")
  444. }
  445. func (m aberrantMessage) GetUnknown() pref.RawFields {
  446. return nil
  447. }
  448. func (m aberrantMessage) SetUnknown(pref.RawFields) {
  449. // SetUnknown discards its input on messages which don't support unknown field storage.
  450. }
  451. func (m aberrantMessage) IsValid() bool {
  452. // An invalid message is a read-only, empty message. Since we don't know anything
  453. // about the alleged contents of this message, we can't say with confidence that
  454. // it is invalid in this sense. Therefore, report it as valid.
  455. return true
  456. }
  457. func (m aberrantMessage) ProtoMethods() *piface.Methods {
  458. return aberrantProtoMethods
  459. }
  460. func (m aberrantMessage) protoUnwrap() interface{} {
  461. return m.v.Interface()
  462. }