123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312 |
- // Copyright 2018 The Go Authors. All rights reserved.
- // Use of this source code is governed by a BSD-style
- // license that can be found in the LICENSE file.
- // This file provides the generic implementation of Sum and MAC. Other files
- // might provide optimized assembly implementations of some of this code.
- package poly1305
- import (
- "encoding/binary"
- "math/bits"
- )
- // Poly1305 [RFC 7539] is a relatively simple algorithm: the authentication tag
- // for a 64 bytes message is approximately
- //
- // s + m[0:16] * r⁴ + m[16:32] * r³ + m[32:48] * r² + m[48:64] * r mod 2¹³⁰ - 5
- //
- // for some secret r and s. It can be computed sequentially like
- //
- // for len(msg) > 0:
- // h += read(msg, 16)
- // h *= r
- // h %= 2¹³⁰ - 5
- // return h + s
- //
- // All the complexity is about doing performant constant-time math on numbers
- // larger than any available numeric type.
- func sumGeneric(out *[TagSize]byte, msg []byte, key *[32]byte) {
- h := newMACGeneric(key)
- h.Write(msg)
- h.Sum(out)
- }
- func newMACGeneric(key *[32]byte) macGeneric {
- m := macGeneric{}
- initialize(key, &m.macState)
- return m
- }
- // macState holds numbers in saturated 64-bit little-endian limbs. That is,
- // the value of [x0, x1, x2] is x[0] + x[1] * 2⁶⁴ + x[2] * 2¹²⁸.
- type macState struct {
- // h is the main accumulator. It is to be interpreted modulo 2¹³⁰ - 5, but
- // can grow larger during and after rounds. It must, however, remain below
- // 2 * (2¹³⁰ - 5).
- h [3]uint64
- // r and s are the private key components.
- r [2]uint64
- s [2]uint64
- }
- type macGeneric struct {
- macState
- buffer [TagSize]byte
- offset int
- }
- // Write splits the incoming message into TagSize chunks, and passes them to
- // update. It buffers incomplete chunks.
- func (h *macGeneric) Write(p []byte) (int, error) {
- nn := len(p)
- if h.offset > 0 {
- n := copy(h.buffer[h.offset:], p)
- if h.offset+n < TagSize {
- h.offset += n
- return nn, nil
- }
- p = p[n:]
- h.offset = 0
- updateGeneric(&h.macState, h.buffer[:])
- }
- if n := len(p) - (len(p) % TagSize); n > 0 {
- updateGeneric(&h.macState, p[:n])
- p = p[n:]
- }
- if len(p) > 0 {
- h.offset += copy(h.buffer[h.offset:], p)
- }
- return nn, nil
- }
- // Sum flushes the last incomplete chunk from the buffer, if any, and generates
- // the MAC output. It does not modify its state, in order to allow for multiple
- // calls to Sum, even if no Write is allowed after Sum.
- func (h *macGeneric) Sum(out *[TagSize]byte) {
- state := h.macState
- if h.offset > 0 {
- updateGeneric(&state, h.buffer[:h.offset])
- }
- finalize(out, &state.h, &state.s)
- }
- // [rMask0, rMask1] is the specified Poly1305 clamping mask in little-endian. It
- // clears some bits of the secret coefficient to make it possible to implement
- // multiplication more efficiently.
- const (
- rMask0 = 0x0FFFFFFC0FFFFFFF
- rMask1 = 0x0FFFFFFC0FFFFFFC
- )
- // initialize loads the 256-bit key into the two 128-bit secret values r and s.
- func initialize(key *[32]byte, m *macState) {
- m.r[0] = binary.LittleEndian.Uint64(key[0:8]) & rMask0
- m.r[1] = binary.LittleEndian.Uint64(key[8:16]) & rMask1
- m.s[0] = binary.LittleEndian.Uint64(key[16:24])
- m.s[1] = binary.LittleEndian.Uint64(key[24:32])
- }
- // uint128 holds a 128-bit number as two 64-bit limbs, for use with the
- // bits.Mul64 and bits.Add64 intrinsics.
- type uint128 struct {
- lo, hi uint64
- }
- func mul64(a, b uint64) uint128 {
- hi, lo := bits.Mul64(a, b)
- return uint128{lo, hi}
- }
- func add128(a, b uint128) uint128 {
- lo, c := bits.Add64(a.lo, b.lo, 0)
- hi, c := bits.Add64(a.hi, b.hi, c)
- if c != 0 {
- panic("poly1305: unexpected overflow")
- }
- return uint128{lo, hi}
- }
- func shiftRightBy2(a uint128) uint128 {
- a.lo = a.lo>>2 | (a.hi&3)<<62
- a.hi = a.hi >> 2
- return a
- }
- // updateGeneric absorbs msg into the state.h accumulator. For each chunk m of
- // 128 bits of message, it computes
- //
- // h₊ = (h + m) * r mod 2¹³⁰ - 5
- //
- // If the msg length is not a multiple of TagSize, it assumes the last
- // incomplete chunk is the final one.
- func updateGeneric(state *macState, msg []byte) {
- h0, h1, h2 := state.h[0], state.h[1], state.h[2]
- r0, r1 := state.r[0], state.r[1]
- for len(msg) > 0 {
- var c uint64
- // For the first step, h + m, we use a chain of bits.Add64 intrinsics.
- // The resulting value of h might exceed 2¹³⁰ - 5, but will be partially
- // reduced at the end of the multiplication below.
- //
- // The spec requires us to set a bit just above the message size, not to
- // hide leading zeroes. For full chunks, that's 1 << 128, so we can just
- // add 1 to the most significant (2¹²⁸) limb, h2.
- if len(msg) >= TagSize {
- h0, c = bits.Add64(h0, binary.LittleEndian.Uint64(msg[0:8]), 0)
- h1, c = bits.Add64(h1, binary.LittleEndian.Uint64(msg[8:16]), c)
- h2 += c + 1
- msg = msg[TagSize:]
- } else {
- var buf [TagSize]byte
- copy(buf[:], msg)
- buf[len(msg)] = 1
- h0, c = bits.Add64(h0, binary.LittleEndian.Uint64(buf[0:8]), 0)
- h1, c = bits.Add64(h1, binary.LittleEndian.Uint64(buf[8:16]), c)
- h2 += c
- msg = nil
- }
- // Multiplication of big number limbs is similar to elementary school
- // columnar multiplication. Instead of digits, there are 64-bit limbs.
- //
- // We are multiplying a 3 limbs number, h, by a 2 limbs number, r.
- //
- // h2 h1 h0 x
- // r1 r0 =
- // ----------------
- // h2r0 h1r0 h0r0 <-- individual 128-bit products
- // + h2r1 h1r1 h0r1
- // ------------------------
- // m3 m2 m1 m0 <-- result in 128-bit overlapping limbs
- // ------------------------
- // m3.hi m2.hi m1.hi m0.hi <-- carry propagation
- // + m3.lo m2.lo m1.lo m0.lo
- // -------------------------------
- // t4 t3 t2 t1 t0 <-- final result in 64-bit limbs
- //
- // The main difference from pen-and-paper multiplication is that we do
- // carry propagation in a separate step, as if we wrote two digit sums
- // at first (the 128-bit limbs), and then carried the tens all at once.
- h0r0 := mul64(h0, r0)
- h1r0 := mul64(h1, r0)
- h2r0 := mul64(h2, r0)
- h0r1 := mul64(h0, r1)
- h1r1 := mul64(h1, r1)
- h2r1 := mul64(h2, r1)
- // Since h2 is known to be at most 7 (5 + 1 + 1), and r0 and r1 have their
- // top 4 bits cleared by rMask{0,1}, we know that their product is not going
- // to overflow 64 bits, so we can ignore the high part of the products.
- //
- // This also means that the product doesn't have a fifth limb (t4).
- if h2r0.hi != 0 {
- panic("poly1305: unexpected overflow")
- }
- if h2r1.hi != 0 {
- panic("poly1305: unexpected overflow")
- }
- m0 := h0r0
- m1 := add128(h1r0, h0r1) // These two additions don't overflow thanks again
- m2 := add128(h2r0, h1r1) // to the 4 masked bits at the top of r0 and r1.
- m3 := h2r1
- t0 := m0.lo
- t1, c := bits.Add64(m1.lo, m0.hi, 0)
- t2, c := bits.Add64(m2.lo, m1.hi, c)
- t3, _ := bits.Add64(m3.lo, m2.hi, c)
- // Now we have the result as 4 64-bit limbs, and we need to reduce it
- // modulo 2¹³⁰ - 5. The special shape of this Crandall prime lets us do
- // a cheap partial reduction according to the reduction identity
- //
- // c * 2¹³⁰ + n = c * 5 + n mod 2¹³⁰ - 5
- //
- // because 2¹³⁰ = 5 mod 2¹³⁰ - 5. Partial reduction since the result is
- // likely to be larger than 2¹³⁰ - 5, but still small enough to fit the
- // assumptions we make about h in the rest of the code.
- //
- // See also https://speakerdeck.com/gtank/engineering-prime-numbers?slide=23
- // We split the final result at the 2¹³⁰ mark into h and cc, the carry.
- // Note that the carry bits are effectively shifted left by 2, in other
- // words, cc = c * 4 for the c in the reduction identity.
- h0, h1, h2 = t0, t1, t2&maskLow2Bits
- cc := uint128{t2 & maskNotLow2Bits, t3}
- // To add c * 5 to h, we first add cc = c * 4, and then add (cc >> 2) = c.
- h0, c = bits.Add64(h0, cc.lo, 0)
- h1, c = bits.Add64(h1, cc.hi, c)
- h2 += c
- cc = shiftRightBy2(cc)
- h0, c = bits.Add64(h0, cc.lo, 0)
- h1, c = bits.Add64(h1, cc.hi, c)
- h2 += c
- // h2 is at most 3 + 1 + 1 = 5, making the whole of h at most
- //
- // 5 * 2¹²⁸ + (2¹²⁸ - 1) = 6 * 2¹²⁸ - 1
- }
- state.h[0], state.h[1], state.h[2] = h0, h1, h2
- }
- const (
- maskLow2Bits uint64 = 0x0000000000000003
- maskNotLow2Bits uint64 = ^maskLow2Bits
- )
- // select64 returns x if v == 1 and y if v == 0, in constant time.
- func select64(v, x, y uint64) uint64 { return ^(v-1)&x | (v-1)&y }
- // [p0, p1, p2] is 2¹³⁰ - 5 in little endian order.
- const (
- p0 = 0xFFFFFFFFFFFFFFFB
- p1 = 0xFFFFFFFFFFFFFFFF
- p2 = 0x0000000000000003
- )
- // finalize completes the modular reduction of h and computes
- //
- // out = h + s mod 2¹²⁸
- func finalize(out *[TagSize]byte, h *[3]uint64, s *[2]uint64) {
- h0, h1, h2 := h[0], h[1], h[2]
- // After the partial reduction in updateGeneric, h might be more than
- // 2¹³⁰ - 5, but will be less than 2 * (2¹³⁰ - 5). To complete the reduction
- // in constant time, we compute t = h - (2¹³⁰ - 5), and select h as the
- // result if the subtraction underflows, and t otherwise.
- hMinusP0, b := bits.Sub64(h0, p0, 0)
- hMinusP1, b := bits.Sub64(h1, p1, b)
- _, b = bits.Sub64(h2, p2, b)
- // h = h if h < p else h - p
- h0 = select64(b, h0, hMinusP0)
- h1 = select64(b, h1, hMinusP1)
- // Finally, we compute the last Poly1305 step
- //
- // tag = h + s mod 2¹²⁸
- //
- // by just doing a wide addition with the 128 low bits of h and discarding
- // the overflow.
- h0, c := bits.Add64(h0, s[0], 0)
- h1, _ = bits.Add64(h1, s[1], c)
- binary.LittleEndian.PutUint64(out[0:8], h0)
- binary.LittleEndian.PutUint64(out[8:16], h1)
- }
|