encode.go 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418
  1. // Copyright (c) 2012-2015 Ugorji Nwoke. All rights reserved.
  2. // Use of this source code is governed by a MIT license found in the LICENSE file.
  3. package codec
  4. import (
  5. "encoding"
  6. "fmt"
  7. "io"
  8. "reflect"
  9. "sort"
  10. "sync"
  11. )
  12. const (
  13. defEncByteBufSize = 1 << 6 // 4:16, 6:64, 8:256, 10:1024
  14. )
  15. // AsSymbolFlag defines what should be encoded as symbols.
  16. type AsSymbolFlag uint8
  17. const (
  18. // AsSymbolDefault is default.
  19. // Currently, this means only encode struct field names as symbols.
  20. // The default is subject to change.
  21. AsSymbolDefault AsSymbolFlag = iota
  22. // AsSymbolAll means encode anything which could be a symbol as a symbol.
  23. AsSymbolAll = 0xfe
  24. // AsSymbolNone means do not encode anything as a symbol.
  25. AsSymbolNone = 1 << iota
  26. // AsSymbolMapStringKeys means encode keys in map[string]XXX as symbols.
  27. AsSymbolMapStringKeysFlag
  28. // AsSymbolStructFieldName means encode struct field names as symbols.
  29. AsSymbolStructFieldNameFlag
  30. )
  31. // encWriter abstracts writing to a byte array or to an io.Writer.
  32. type encWriter interface {
  33. writeb([]byte)
  34. writestr(string)
  35. writen1(byte)
  36. writen2(byte, byte)
  37. atEndOfEncode()
  38. }
  39. // encDriver abstracts the actual codec (binc vs msgpack, etc)
  40. type encDriver interface {
  41. IsBuiltinType(rt uintptr) bool
  42. EncodeBuiltin(rt uintptr, v interface{})
  43. EncodeNil()
  44. EncodeInt(i int64)
  45. EncodeUint(i uint64)
  46. EncodeBool(b bool)
  47. EncodeFloat32(f float32)
  48. EncodeFloat64(f float64)
  49. // encodeExtPreamble(xtag byte, length int)
  50. EncodeRawExt(re *RawExt, e *Encoder)
  51. EncodeExt(v interface{}, xtag uint64, ext Ext, e *Encoder)
  52. EncodeArrayStart(length int)
  53. EncodeMapStart(length int)
  54. EncodeString(c charEncoding, v string)
  55. EncodeSymbol(v string)
  56. EncodeStringBytes(c charEncoding, v []byte)
  57. //TODO
  58. //encBignum(f *big.Int)
  59. //encStringRunes(c charEncoding, v []rune)
  60. reset()
  61. }
  62. type encDriverAsis interface {
  63. EncodeAsis(v []byte)
  64. }
  65. type encNoSeparator struct{}
  66. func (_ encNoSeparator) EncodeEnd() {}
  67. type ioEncWriterWriter interface {
  68. WriteByte(c byte) error
  69. WriteString(s string) (n int, err error)
  70. Write(p []byte) (n int, err error)
  71. }
  72. type ioEncStringWriter interface {
  73. WriteString(s string) (n int, err error)
  74. }
  75. type EncodeOptions struct {
  76. // Encode a struct as an array, and not as a map
  77. StructToArray bool
  78. // Canonical representation means that encoding a value will always result in the same
  79. // sequence of bytes.
  80. //
  81. // This only affects maps, as the iteration order for maps is random.
  82. //
  83. // The implementation MAY use the natural sort order for the map keys if possible:
  84. //
  85. // - If there is a natural sort order (ie for number, bool, string or []byte keys),
  86. // then the map keys are first sorted in natural order and then written
  87. // with corresponding map values to the strema.
  88. // - If there is no natural sort order, then the map keys will first be
  89. // encoded into []byte, and then sorted,
  90. // before writing the sorted keys and the corresponding map values to the stream.
  91. //
  92. Canonical bool
  93. // CheckCircularRef controls whether we check for circular references
  94. // and error fast during an encode.
  95. //
  96. // If enabled, an error is received if a pointer to a struct
  97. // references itself either directly or through one of its fields (iteratively).
  98. //
  99. // This is opt-in, as there may be a performance hit to checking circular references.
  100. CheckCircularRef bool
  101. // AsSymbols defines what should be encoded as symbols.
  102. //
  103. // Encoding as symbols can reduce the encoded size significantly.
  104. //
  105. // However, during decoding, each string to be encoded as a symbol must
  106. // be checked to see if it has been seen before. Consequently, encoding time
  107. // will increase if using symbols, because string comparisons has a clear cost.
  108. //
  109. // Sample values:
  110. // AsSymbolNone
  111. // AsSymbolAll
  112. // AsSymbolMapStringKeys
  113. // AsSymbolMapStringKeysFlag | AsSymbolStructFieldNameFlag
  114. AsSymbols AsSymbolFlag
  115. }
  116. // ---------------------------------------------
  117. type simpleIoEncWriterWriter struct {
  118. w io.Writer
  119. bw io.ByteWriter
  120. sw ioEncStringWriter
  121. }
  122. func (o *simpleIoEncWriterWriter) WriteByte(c byte) (err error) {
  123. if o.bw != nil {
  124. return o.bw.WriteByte(c)
  125. }
  126. _, err = o.w.Write([]byte{c})
  127. return
  128. }
  129. func (o *simpleIoEncWriterWriter) WriteString(s string) (n int, err error) {
  130. if o.sw != nil {
  131. return o.sw.WriteString(s)
  132. }
  133. // return o.w.Write([]byte(s))
  134. return o.w.Write(bytesView(s))
  135. }
  136. func (o *simpleIoEncWriterWriter) Write(p []byte) (n int, err error) {
  137. return o.w.Write(p)
  138. }
  139. // ----------------------------------------
  140. // ioEncWriter implements encWriter and can write to an io.Writer implementation
  141. type ioEncWriter struct {
  142. w ioEncWriterWriter
  143. s simpleIoEncWriterWriter
  144. // x [8]byte // temp byte array re-used internally for efficiency
  145. }
  146. func (z *ioEncWriter) writeb(bs []byte) {
  147. if len(bs) == 0 {
  148. return
  149. }
  150. n, err := z.w.Write(bs)
  151. if err != nil {
  152. panic(err)
  153. }
  154. if n != len(bs) {
  155. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(bs), n))
  156. }
  157. }
  158. func (z *ioEncWriter) writestr(s string) {
  159. n, err := z.w.WriteString(s)
  160. if err != nil {
  161. panic(err)
  162. }
  163. if n != len(s) {
  164. panic(fmt.Errorf("incorrect num bytes written. Expecting: %v, Wrote: %v", len(s), n))
  165. }
  166. }
  167. func (z *ioEncWriter) writen1(b byte) {
  168. if err := z.w.WriteByte(b); err != nil {
  169. panic(err)
  170. }
  171. }
  172. func (z *ioEncWriter) writen2(b1 byte, b2 byte) {
  173. z.writen1(b1)
  174. z.writen1(b2)
  175. }
  176. func (z *ioEncWriter) atEndOfEncode() {}
  177. // ----------------------------------------
  178. // bytesEncWriter implements encWriter and can write to an byte slice.
  179. // It is used by Marshal function.
  180. type bytesEncWriter struct {
  181. b []byte
  182. c int // cursor
  183. out *[]byte // write out on atEndOfEncode
  184. }
  185. func (z *bytesEncWriter) writeb(s []byte) {
  186. if len(s) > 0 {
  187. c := z.grow(len(s))
  188. copy(z.b[c:], s)
  189. }
  190. }
  191. func (z *bytesEncWriter) writestr(s string) {
  192. if len(s) > 0 {
  193. c := z.grow(len(s))
  194. copy(z.b[c:], s)
  195. }
  196. }
  197. func (z *bytesEncWriter) writen1(b1 byte) {
  198. c := z.grow(1)
  199. z.b[c] = b1
  200. }
  201. func (z *bytesEncWriter) writen2(b1 byte, b2 byte) {
  202. c := z.grow(2)
  203. z.b[c] = b1
  204. z.b[c+1] = b2
  205. }
  206. func (z *bytesEncWriter) atEndOfEncode() {
  207. *(z.out) = z.b[:z.c]
  208. }
  209. func (z *bytesEncWriter) grow(n int) (oldcursor int) {
  210. oldcursor = z.c
  211. z.c = oldcursor + n
  212. if z.c > len(z.b) {
  213. if z.c > cap(z.b) {
  214. // appendslice logic (if cap < 1024, *2, else *1.25): more expensive. many copy calls.
  215. // bytes.Buffer model (2*cap + n): much better
  216. // bs := make([]byte, 2*cap(z.b)+n)
  217. bs := make([]byte, growCap(cap(z.b), 1, n))
  218. copy(bs, z.b[:oldcursor])
  219. z.b = bs
  220. } else {
  221. z.b = z.b[:cap(z.b)]
  222. }
  223. }
  224. return
  225. }
  226. // ---------------------------------------------
  227. type encFnInfo struct {
  228. e *Encoder
  229. ti *typeInfo
  230. xfFn Ext
  231. xfTag uint64
  232. seq seqType
  233. }
  234. func (f *encFnInfo) builtin(rv reflect.Value) {
  235. f.e.e.EncodeBuiltin(f.ti.rtid, rv.Interface())
  236. }
  237. func (f *encFnInfo) rawExt(rv reflect.Value) {
  238. // rev := rv.Interface().(RawExt)
  239. // f.e.e.EncodeRawExt(&rev, f.e)
  240. var re *RawExt
  241. if rv.CanAddr() {
  242. re = rv.Addr().Interface().(*RawExt)
  243. } else {
  244. rev := rv.Interface().(RawExt)
  245. re = &rev
  246. }
  247. f.e.e.EncodeRawExt(re, f.e)
  248. }
  249. func (f *encFnInfo) ext(rv reflect.Value) {
  250. // if this is a struct|array and it was addressable, then pass the address directly (not the value)
  251. if k := rv.Kind(); (k == reflect.Struct || k == reflect.Array) && rv.CanAddr() {
  252. rv = rv.Addr()
  253. }
  254. f.e.e.EncodeExt(rv.Interface(), f.xfTag, f.xfFn, f.e)
  255. }
  256. func (f *encFnInfo) getValueForMarshalInterface(rv reflect.Value, indir int8) (v interface{}, proceed bool) {
  257. if indir == 0 {
  258. v = rv.Interface()
  259. } else if indir == -1 {
  260. // If a non-pointer was passed to Encode(), then that value is not addressable.
  261. // Take addr if addresable, else copy value to an addressable value.
  262. if rv.CanAddr() {
  263. v = rv.Addr().Interface()
  264. } else {
  265. rv2 := reflect.New(rv.Type())
  266. rv2.Elem().Set(rv)
  267. v = rv2.Interface()
  268. // fmt.Printf("rv.Type: %v, rv2.Type: %v, v: %v\n", rv.Type(), rv2.Type(), v)
  269. }
  270. } else {
  271. for j := int8(0); j < indir; j++ {
  272. if rv.IsNil() {
  273. f.e.e.EncodeNil()
  274. return
  275. }
  276. rv = rv.Elem()
  277. }
  278. v = rv.Interface()
  279. }
  280. return v, true
  281. }
  282. func (f *encFnInfo) selferMarshal(rv reflect.Value) {
  283. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.csIndir); proceed {
  284. v.(Selfer).CodecEncodeSelf(f.e)
  285. }
  286. }
  287. func (f *encFnInfo) binaryMarshal(rv reflect.Value) {
  288. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.bmIndir); proceed {
  289. bs, fnerr := v.(encoding.BinaryMarshaler).MarshalBinary()
  290. f.e.marshal(bs, fnerr, false, c_RAW)
  291. }
  292. }
  293. func (f *encFnInfo) textMarshal(rv reflect.Value) {
  294. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.tmIndir); proceed {
  295. // debugf(">>>> encoding.TextMarshaler: %T", rv.Interface())
  296. bs, fnerr := v.(encoding.TextMarshaler).MarshalText()
  297. f.e.marshal(bs, fnerr, false, c_UTF8)
  298. }
  299. }
  300. func (f *encFnInfo) jsonMarshal(rv reflect.Value) {
  301. if v, proceed := f.getValueForMarshalInterface(rv, f.ti.jmIndir); proceed {
  302. bs, fnerr := v.(jsonMarshaler).MarshalJSON()
  303. f.e.marshal(bs, fnerr, true, c_UTF8)
  304. }
  305. }
  306. func (f *encFnInfo) kBool(rv reflect.Value) {
  307. f.e.e.EncodeBool(rv.Bool())
  308. }
  309. func (f *encFnInfo) kString(rv reflect.Value) {
  310. f.e.e.EncodeString(c_UTF8, rv.String())
  311. }
  312. func (f *encFnInfo) kFloat64(rv reflect.Value) {
  313. f.e.e.EncodeFloat64(rv.Float())
  314. }
  315. func (f *encFnInfo) kFloat32(rv reflect.Value) {
  316. f.e.e.EncodeFloat32(float32(rv.Float()))
  317. }
  318. func (f *encFnInfo) kInt(rv reflect.Value) {
  319. f.e.e.EncodeInt(rv.Int())
  320. }
  321. func (f *encFnInfo) kUint(rv reflect.Value) {
  322. f.e.e.EncodeUint(rv.Uint())
  323. }
  324. func (f *encFnInfo) kInvalid(rv reflect.Value) {
  325. f.e.e.EncodeNil()
  326. }
  327. func (f *encFnInfo) kErr(rv reflect.Value) {
  328. f.e.errorf("unsupported kind %s, for %#v", rv.Kind(), rv)
  329. }
  330. func (f *encFnInfo) kSlice(rv reflect.Value) {
  331. ti := f.ti
  332. // array may be non-addressable, so we have to manage with care
  333. // (don't call rv.Bytes, rv.Slice, etc).
  334. // E.g. type struct S{B [2]byte};
  335. // Encode(S{}) will bomb on "panic: slice of unaddressable array".
  336. e := f.e
  337. if f.seq != seqTypeArray {
  338. if rv.IsNil() {
  339. e.e.EncodeNil()
  340. return
  341. }
  342. // If in this method, then there was no extension function defined.
  343. // So it's okay to treat as []byte.
  344. if ti.rtid == uint8SliceTypId {
  345. e.e.EncodeStringBytes(c_RAW, rv.Bytes())
  346. return
  347. }
  348. }
  349. cr := e.cr
  350. rtelem := ti.rt.Elem()
  351. l := rv.Len()
  352. if ti.rtid == uint8SliceTypId || rtelem.Kind() == reflect.Uint8 {
  353. switch f.seq {
  354. case seqTypeArray:
  355. // if l == 0 { e.e.encodeStringBytes(c_RAW, nil) } else
  356. if rv.CanAddr() {
  357. e.e.EncodeStringBytes(c_RAW, rv.Slice(0, l).Bytes())
  358. } else {
  359. var bs []byte
  360. if l <= cap(e.b) {
  361. bs = e.b[:l]
  362. } else {
  363. bs = make([]byte, l)
  364. }
  365. reflect.Copy(reflect.ValueOf(bs), rv)
  366. // TODO: Test that reflect.Copy works instead of manual one-by-one
  367. // for i := 0; i < l; i++ {
  368. // bs[i] = byte(rv.Index(i).Uint())
  369. // }
  370. e.e.EncodeStringBytes(c_RAW, bs)
  371. }
  372. case seqTypeSlice:
  373. e.e.EncodeStringBytes(c_RAW, rv.Bytes())
  374. case seqTypeChan:
  375. bs := e.b[:0]
  376. // do not use range, so that the number of elements encoded
  377. // does not change, and encoding does not hang waiting on someone to close chan.
  378. // for b := range rv.Interface().(<-chan byte) {
  379. // bs = append(bs, b)
  380. // }
  381. ch := rv.Interface().(<-chan byte)
  382. for i := 0; i < l; i++ {
  383. bs = append(bs, <-ch)
  384. }
  385. e.e.EncodeStringBytes(c_RAW, bs)
  386. }
  387. return
  388. }
  389. if ti.mbs {
  390. if l%2 == 1 {
  391. e.errorf("mapBySlice requires even slice length, but got %v", l)
  392. return
  393. }
  394. e.e.EncodeMapStart(l / 2)
  395. } else {
  396. e.e.EncodeArrayStart(l)
  397. }
  398. if l > 0 {
  399. for rtelem.Kind() == reflect.Ptr {
  400. rtelem = rtelem.Elem()
  401. }
  402. // if kind is reflect.Interface, do not pre-determine the
  403. // encoding type, because preEncodeValue may break it down to
  404. // a concrete type and kInterface will bomb.
  405. var fn *encFn
  406. if rtelem.Kind() != reflect.Interface {
  407. rtelemid := reflect.ValueOf(rtelem).Pointer()
  408. fn = e.getEncFn(rtelemid, rtelem, true, true)
  409. }
  410. // TODO: Consider perf implication of encoding odd index values as symbols if type is string
  411. for j := 0; j < l; j++ {
  412. if cr != nil {
  413. if ti.mbs {
  414. if l%2 == 0 {
  415. cr.sendContainerState(containerMapKey)
  416. } else {
  417. cr.sendContainerState(containerMapValue)
  418. }
  419. } else {
  420. cr.sendContainerState(containerArrayElem)
  421. }
  422. }
  423. if f.seq == seqTypeChan {
  424. if rv2, ok2 := rv.Recv(); ok2 {
  425. e.encodeValue(rv2, fn)
  426. } else {
  427. e.encode(nil) // WE HAVE TO DO SOMETHING, so nil if nothing received.
  428. }
  429. } else {
  430. e.encodeValue(rv.Index(j), fn)
  431. }
  432. }
  433. }
  434. if cr != nil {
  435. if ti.mbs {
  436. cr.sendContainerState(containerMapEnd)
  437. } else {
  438. cr.sendContainerState(containerArrayEnd)
  439. }
  440. }
  441. }
  442. func (f *encFnInfo) kStruct(rv reflect.Value) {
  443. fti := f.ti
  444. e := f.e
  445. cr := e.cr
  446. tisfi := fti.sfip
  447. toMap := !(fti.toArray || e.h.StructToArray)
  448. newlen := len(fti.sfi)
  449. // Use sync.Pool to reduce allocating slices unnecessarily.
  450. // The cost of sync.Pool is less than the cost of new allocation.
  451. pool, poolv, fkvs := encStructPoolGet(newlen)
  452. // if toMap, use the sorted array. If toArray, use unsorted array (to match sequence in struct)
  453. if toMap {
  454. tisfi = fti.sfi
  455. }
  456. newlen = 0
  457. var kv stringRv
  458. for _, si := range tisfi {
  459. kv.r = si.field(rv, false)
  460. if toMap {
  461. if si.omitEmpty && isEmptyValue(kv.r) {
  462. continue
  463. }
  464. kv.v = si.encName
  465. } else {
  466. // use the zero value.
  467. // if a reference or struct, set to nil (so you do not output too much)
  468. if si.omitEmpty && isEmptyValue(kv.r) {
  469. switch kv.r.Kind() {
  470. case reflect.Struct, reflect.Interface, reflect.Ptr, reflect.Array,
  471. reflect.Map, reflect.Slice:
  472. kv.r = reflect.Value{} //encode as nil
  473. }
  474. }
  475. }
  476. fkvs[newlen] = kv
  477. newlen++
  478. }
  479. // debugf(">>>> kStruct: newlen: %v", newlen)
  480. // sep := !e.be
  481. ee := e.e //don't dereference everytime
  482. if toMap {
  483. ee.EncodeMapStart(newlen)
  484. // asSymbols := e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  485. asSymbols := e.h.AsSymbols == AsSymbolDefault || e.h.AsSymbols&AsSymbolStructFieldNameFlag != 0
  486. for j := 0; j < newlen; j++ {
  487. kv = fkvs[j]
  488. if cr != nil {
  489. cr.sendContainerState(containerMapKey)
  490. }
  491. if asSymbols {
  492. ee.EncodeSymbol(kv.v)
  493. } else {
  494. ee.EncodeString(c_UTF8, kv.v)
  495. }
  496. if cr != nil {
  497. cr.sendContainerState(containerMapValue)
  498. }
  499. e.encodeValue(kv.r, nil)
  500. }
  501. if cr != nil {
  502. cr.sendContainerState(containerMapEnd)
  503. }
  504. } else {
  505. ee.EncodeArrayStart(newlen)
  506. for j := 0; j < newlen; j++ {
  507. kv = fkvs[j]
  508. if cr != nil {
  509. cr.sendContainerState(containerArrayElem)
  510. }
  511. e.encodeValue(kv.r, nil)
  512. }
  513. if cr != nil {
  514. cr.sendContainerState(containerArrayEnd)
  515. }
  516. }
  517. // do not use defer. Instead, use explicit pool return at end of function.
  518. // defer has a cost we are trying to avoid.
  519. // If there is a panic and these slices are not returned, it is ok.
  520. if pool != nil {
  521. pool.Put(poolv)
  522. }
  523. }
  524. // func (f *encFnInfo) kPtr(rv reflect.Value) {
  525. // debugf(">>>>>>> ??? encode kPtr called - shouldn't get called")
  526. // if rv.IsNil() {
  527. // f.e.e.encodeNil()
  528. // return
  529. // }
  530. // f.e.encodeValue(rv.Elem())
  531. // }
  532. // func (f *encFnInfo) kInterface(rv reflect.Value) {
  533. // println("kInterface called")
  534. // debug.PrintStack()
  535. // if rv.IsNil() {
  536. // f.e.e.EncodeNil()
  537. // return
  538. // }
  539. // f.e.encodeValue(rv.Elem(), nil)
  540. // }
  541. func (f *encFnInfo) kMap(rv reflect.Value) {
  542. ee := f.e.e
  543. if rv.IsNil() {
  544. ee.EncodeNil()
  545. return
  546. }
  547. l := rv.Len()
  548. ee.EncodeMapStart(l)
  549. e := f.e
  550. cr := e.cr
  551. if l == 0 {
  552. if cr != nil {
  553. cr.sendContainerState(containerMapEnd)
  554. }
  555. return
  556. }
  557. var asSymbols bool
  558. // determine the underlying key and val encFn's for the map.
  559. // This eliminates some work which is done for each loop iteration i.e.
  560. // rv.Type(), ref.ValueOf(rt).Pointer(), then check map/list for fn.
  561. //
  562. // However, if kind is reflect.Interface, do not pre-determine the
  563. // encoding type, because preEncodeValue may break it down to
  564. // a concrete type and kInterface will bomb.
  565. var keyFn, valFn *encFn
  566. ti := f.ti
  567. rtkey := ti.rt.Key()
  568. rtval := ti.rt.Elem()
  569. rtkeyid := reflect.ValueOf(rtkey).Pointer()
  570. // keyTypeIsString := f.ti.rt.Key().Kind() == reflect.String
  571. var keyTypeIsString = rtkeyid == stringTypId
  572. if keyTypeIsString {
  573. asSymbols = e.h.AsSymbols&AsSymbolMapStringKeysFlag != 0
  574. } else {
  575. for rtkey.Kind() == reflect.Ptr {
  576. rtkey = rtkey.Elem()
  577. }
  578. if rtkey.Kind() != reflect.Interface {
  579. rtkeyid = reflect.ValueOf(rtkey).Pointer()
  580. keyFn = e.getEncFn(rtkeyid, rtkey, true, true)
  581. }
  582. }
  583. for rtval.Kind() == reflect.Ptr {
  584. rtval = rtval.Elem()
  585. }
  586. if rtval.Kind() != reflect.Interface {
  587. rtvalid := reflect.ValueOf(rtval).Pointer()
  588. valFn = e.getEncFn(rtvalid, rtval, true, true)
  589. }
  590. mks := rv.MapKeys()
  591. // for j, lmks := 0, len(mks); j < lmks; j++ {
  592. if e.h.Canonical {
  593. e.kMapCanonical(rtkeyid, rtkey, rv, mks, valFn, asSymbols)
  594. } else {
  595. for j := range mks {
  596. if cr != nil {
  597. cr.sendContainerState(containerMapKey)
  598. }
  599. if keyTypeIsString {
  600. if asSymbols {
  601. ee.EncodeSymbol(mks[j].String())
  602. } else {
  603. ee.EncodeString(c_UTF8, mks[j].String())
  604. }
  605. } else {
  606. e.encodeValue(mks[j], keyFn)
  607. }
  608. if cr != nil {
  609. cr.sendContainerState(containerMapValue)
  610. }
  611. e.encodeValue(rv.MapIndex(mks[j]), valFn)
  612. }
  613. }
  614. if cr != nil {
  615. cr.sendContainerState(containerMapEnd)
  616. }
  617. }
  618. func (e *Encoder) kMapCanonical(rtkeyid uintptr, rtkey reflect.Type, rv reflect.Value, mks []reflect.Value, valFn *encFn, asSymbols bool) {
  619. ee := e.e
  620. cr := e.cr
  621. // we previously did out-of-band if an extension was registered.
  622. // This is not necessary, as the natural kind is sufficient for ordering.
  623. if rtkeyid == uint8SliceTypId {
  624. mksv := make([]bytesRv, len(mks))
  625. for i, k := range mks {
  626. v := &mksv[i]
  627. v.r = k
  628. v.v = k.Bytes()
  629. }
  630. sort.Sort(bytesRvSlice(mksv))
  631. for i := range mksv {
  632. if cr != nil {
  633. cr.sendContainerState(containerMapKey)
  634. }
  635. ee.EncodeStringBytes(c_RAW, mksv[i].v)
  636. if cr != nil {
  637. cr.sendContainerState(containerMapValue)
  638. }
  639. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  640. }
  641. } else {
  642. switch rtkey.Kind() {
  643. case reflect.Bool:
  644. mksv := make([]boolRv, len(mks))
  645. for i, k := range mks {
  646. v := &mksv[i]
  647. v.r = k
  648. v.v = k.Bool()
  649. }
  650. sort.Sort(boolRvSlice(mksv))
  651. for i := range mksv {
  652. if cr != nil {
  653. cr.sendContainerState(containerMapKey)
  654. }
  655. ee.EncodeBool(mksv[i].v)
  656. if cr != nil {
  657. cr.sendContainerState(containerMapValue)
  658. }
  659. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  660. }
  661. case reflect.String:
  662. mksv := make([]stringRv, len(mks))
  663. for i, k := range mks {
  664. v := &mksv[i]
  665. v.r = k
  666. v.v = k.String()
  667. }
  668. sort.Sort(stringRvSlice(mksv))
  669. for i := range mksv {
  670. if cr != nil {
  671. cr.sendContainerState(containerMapKey)
  672. }
  673. if asSymbols {
  674. ee.EncodeSymbol(mksv[i].v)
  675. } else {
  676. ee.EncodeString(c_UTF8, mksv[i].v)
  677. }
  678. if cr != nil {
  679. cr.sendContainerState(containerMapValue)
  680. }
  681. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  682. }
  683. case reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uint, reflect.Uintptr:
  684. mksv := make([]uintRv, len(mks))
  685. for i, k := range mks {
  686. v := &mksv[i]
  687. v.r = k
  688. v.v = k.Uint()
  689. }
  690. sort.Sort(uintRvSlice(mksv))
  691. for i := range mksv {
  692. if cr != nil {
  693. cr.sendContainerState(containerMapKey)
  694. }
  695. ee.EncodeUint(mksv[i].v)
  696. if cr != nil {
  697. cr.sendContainerState(containerMapValue)
  698. }
  699. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  700. }
  701. case reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64, reflect.Int:
  702. mksv := make([]intRv, len(mks))
  703. for i, k := range mks {
  704. v := &mksv[i]
  705. v.r = k
  706. v.v = k.Int()
  707. }
  708. sort.Sort(intRvSlice(mksv))
  709. for i := range mksv {
  710. if cr != nil {
  711. cr.sendContainerState(containerMapKey)
  712. }
  713. ee.EncodeInt(mksv[i].v)
  714. if cr != nil {
  715. cr.sendContainerState(containerMapValue)
  716. }
  717. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  718. }
  719. case reflect.Float32:
  720. mksv := make([]floatRv, len(mks))
  721. for i, k := range mks {
  722. v := &mksv[i]
  723. v.r = k
  724. v.v = k.Float()
  725. }
  726. sort.Sort(floatRvSlice(mksv))
  727. for i := range mksv {
  728. if cr != nil {
  729. cr.sendContainerState(containerMapKey)
  730. }
  731. ee.EncodeFloat32(float32(mksv[i].v))
  732. if cr != nil {
  733. cr.sendContainerState(containerMapValue)
  734. }
  735. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  736. }
  737. case reflect.Float64:
  738. mksv := make([]floatRv, len(mks))
  739. for i, k := range mks {
  740. v := &mksv[i]
  741. v.r = k
  742. v.v = k.Float()
  743. }
  744. sort.Sort(floatRvSlice(mksv))
  745. for i := range mksv {
  746. if cr != nil {
  747. cr.sendContainerState(containerMapKey)
  748. }
  749. ee.EncodeFloat64(mksv[i].v)
  750. if cr != nil {
  751. cr.sendContainerState(containerMapValue)
  752. }
  753. e.encodeValue(rv.MapIndex(mksv[i].r), valFn)
  754. }
  755. default:
  756. // out-of-band
  757. // first encode each key to a []byte first, then sort them, then record
  758. var mksv []byte = make([]byte, 0, len(mks)*16) // temporary byte slice for the encoding
  759. e2 := NewEncoderBytes(&mksv, e.hh)
  760. mksbv := make([]bytesRv, len(mks))
  761. for i, k := range mks {
  762. v := &mksbv[i]
  763. l := len(mksv)
  764. e2.MustEncode(k)
  765. v.r = k
  766. v.v = mksv[l:]
  767. // fmt.Printf(">>>>> %s\n", mksv[l:])
  768. }
  769. sort.Sort(bytesRvSlice(mksbv))
  770. for j := range mksbv {
  771. if cr != nil {
  772. cr.sendContainerState(containerMapKey)
  773. }
  774. e.asis(mksbv[j].v)
  775. if cr != nil {
  776. cr.sendContainerState(containerMapValue)
  777. }
  778. e.encodeValue(rv.MapIndex(mksbv[j].r), valFn)
  779. }
  780. }
  781. }
  782. }
  783. // --------------------------------------------------
  784. // encFn encapsulates the captured variables and the encode function.
  785. // This way, we only do some calculations one times, and pass to the
  786. // code block that should be called (encapsulated in a function)
  787. // instead of executing the checks every time.
  788. type encFn struct {
  789. i encFnInfo
  790. f func(*encFnInfo, reflect.Value)
  791. }
  792. // --------------------------------------------------
  793. type encRtidFn struct {
  794. rtid uintptr
  795. fn encFn
  796. }
  797. // An Encoder writes an object to an output stream in the codec format.
  798. type Encoder struct {
  799. // hopefully, reduce derefencing cost by laying the encWriter inside the Encoder
  800. e encDriver
  801. // NOTE: Encoder shouldn't call it's write methods,
  802. // as the handler MAY need to do some coordination.
  803. w encWriter
  804. s []encRtidFn
  805. ci set
  806. be bool // is binary encoding
  807. js bool // is json handle
  808. wi ioEncWriter
  809. wb bytesEncWriter
  810. h *BasicHandle
  811. hh Handle
  812. cr containerStateRecv
  813. as encDriverAsis
  814. f map[uintptr]*encFn
  815. b [scratchByteArrayLen]byte
  816. }
  817. // NewEncoder returns an Encoder for encoding into an io.Writer.
  818. //
  819. // For efficiency, Users are encouraged to pass in a memory buffered writer
  820. // (eg bufio.Writer, bytes.Buffer).
  821. func NewEncoder(w io.Writer, h Handle) *Encoder {
  822. e := newEncoder(h)
  823. e.Reset(w)
  824. return e
  825. }
  826. // NewEncoderBytes returns an encoder for encoding directly and efficiently
  827. // into a byte slice, using zero-copying to temporary slices.
  828. //
  829. // It will potentially replace the output byte slice pointed to.
  830. // After encoding, the out parameter contains the encoded contents.
  831. func NewEncoderBytes(out *[]byte, h Handle) *Encoder {
  832. e := newEncoder(h)
  833. e.ResetBytes(out)
  834. return e
  835. }
  836. func newEncoder(h Handle) *Encoder {
  837. e := &Encoder{hh: h, h: h.getBasicHandle(), be: h.isBinary()}
  838. _, e.js = h.(*JsonHandle)
  839. e.e = h.newEncDriver(e)
  840. e.as, _ = e.e.(encDriverAsis)
  841. e.cr, _ = e.e.(containerStateRecv)
  842. return e
  843. }
  844. // Reset the Encoder with a new output stream.
  845. //
  846. // This accomodates using the state of the Encoder,
  847. // where it has "cached" information about sub-engines.
  848. func (e *Encoder) Reset(w io.Writer) {
  849. ww, ok := w.(ioEncWriterWriter)
  850. if ok {
  851. e.wi.w = ww
  852. } else {
  853. sww := &e.wi.s
  854. sww.w = w
  855. sww.bw, _ = w.(io.ByteWriter)
  856. sww.sw, _ = w.(ioEncStringWriter)
  857. e.wi.w = sww
  858. //ww = bufio.NewWriterSize(w, defEncByteBufSize)
  859. }
  860. e.w = &e.wi
  861. e.e.reset()
  862. }
  863. func (e *Encoder) ResetBytes(out *[]byte) {
  864. in := *out
  865. if in == nil {
  866. in = make([]byte, defEncByteBufSize)
  867. }
  868. e.wb.b, e.wb.out, e.wb.c = in, out, 0
  869. e.w = &e.wb
  870. e.e.reset()
  871. }
  872. // func (e *Encoder) sendContainerState(c containerState) {
  873. // if e.cr != nil {
  874. // e.cr.sendContainerState(c)
  875. // }
  876. // }
  877. // Encode writes an object into a stream.
  878. //
  879. // Encoding can be configured via the struct tag for the fields.
  880. // The "codec" key in struct field's tag value is the key name,
  881. // followed by an optional comma and options.
  882. // Note that the "json" key is used in the absence of the "codec" key.
  883. //
  884. // To set an option on all fields (e.g. omitempty on all fields), you
  885. // can create a field called _struct, and set flags on it.
  886. //
  887. // Struct values "usually" encode as maps. Each exported struct field is encoded unless:
  888. // - the field's tag is "-", OR
  889. // - the field is empty (empty or the zero value) and its tag specifies the "omitempty" option.
  890. //
  891. // When encoding as a map, the first string in the tag (before the comma)
  892. // is the map key string to use when encoding.
  893. //
  894. // However, struct values may encode as arrays. This happens when:
  895. // - StructToArray Encode option is set, OR
  896. // - the tag on the _struct field sets the "toarray" option
  897. //
  898. // Values with types that implement MapBySlice are encoded as stream maps.
  899. //
  900. // The empty values (for omitempty option) are false, 0, any nil pointer
  901. // or interface value, and any array, slice, map, or string of length zero.
  902. //
  903. // Anonymous fields are encoded inline except:
  904. // - the struct tag specifies a replacement name (first value)
  905. // - the field is of an interface type
  906. //
  907. // Examples:
  908. //
  909. // // NOTE: 'json:' can be used as struct tag key, in place 'codec:' below.
  910. // type MyStruct struct {
  911. // _struct bool `codec:",omitempty"` //set omitempty for every field
  912. // Field1 string `codec:"-"` //skip this field
  913. // Field2 int `codec:"myName"` //Use key "myName" in encode stream
  914. // Field3 int32 `codec:",omitempty"` //use key "Field3". Omit if empty.
  915. // Field4 bool `codec:"f4,omitempty"` //use key "f4". Omit if empty.
  916. // io.Reader //use key "Reader".
  917. // MyStruct `codec:"my1" //use key "my1".
  918. // MyStruct //inline it
  919. // ...
  920. // }
  921. //
  922. // type MyStruct struct {
  923. // _struct bool `codec:",omitempty,toarray"` //set omitempty for every field
  924. // //and encode struct as an array
  925. // }
  926. //
  927. // The mode of encoding is based on the type of the value. When a value is seen:
  928. // - If a Selfer, call its CodecEncodeSelf method
  929. // - If an extension is registered for it, call that extension function
  930. // - If it implements encoding.(Binary|Text|JSON)Marshaler, call its Marshal(Binary|Text|JSON) method
  931. // - Else encode it based on its reflect.Kind
  932. //
  933. // Note that struct field names and keys in map[string]XXX will be treated as symbols.
  934. // Some formats support symbols (e.g. binc) and will properly encode the string
  935. // only once in the stream, and use a tag to refer to it thereafter.
  936. func (e *Encoder) Encode(v interface{}) (err error) {
  937. defer panicToErr(&err)
  938. e.encode(v)
  939. e.w.atEndOfEncode()
  940. return
  941. }
  942. // MustEncode is like Encode, but panics if unable to Encode.
  943. // This provides insight to the code location that triggered the error.
  944. func (e *Encoder) MustEncode(v interface{}) {
  945. e.encode(v)
  946. e.w.atEndOfEncode()
  947. }
  948. // comment out these (Must)Write methods. They were only put there to support cbor.
  949. // However, users already have access to the streams, and can write directly.
  950. //
  951. // // Write allows users write to the Encoder stream directly.
  952. // func (e *Encoder) Write(bs []byte) (err error) {
  953. // defer panicToErr(&err)
  954. // e.w.writeb(bs)
  955. // return
  956. // }
  957. // // MustWrite is like write, but panics if unable to Write.
  958. // func (e *Encoder) MustWrite(bs []byte) {
  959. // e.w.writeb(bs)
  960. // }
  961. func (e *Encoder) encode(iv interface{}) {
  962. // if ics, ok := iv.(Selfer); ok {
  963. // ics.CodecEncodeSelf(e)
  964. // return
  965. // }
  966. switch v := iv.(type) {
  967. case nil:
  968. e.e.EncodeNil()
  969. case Selfer:
  970. v.CodecEncodeSelf(e)
  971. case reflect.Value:
  972. e.encodeValue(v, nil)
  973. case string:
  974. e.e.EncodeString(c_UTF8, v)
  975. case bool:
  976. e.e.EncodeBool(v)
  977. case int:
  978. e.e.EncodeInt(int64(v))
  979. case int8:
  980. e.e.EncodeInt(int64(v))
  981. case int16:
  982. e.e.EncodeInt(int64(v))
  983. case int32:
  984. e.e.EncodeInt(int64(v))
  985. case int64:
  986. e.e.EncodeInt(v)
  987. case uint:
  988. e.e.EncodeUint(uint64(v))
  989. case uint8:
  990. e.e.EncodeUint(uint64(v))
  991. case uint16:
  992. e.e.EncodeUint(uint64(v))
  993. case uint32:
  994. e.e.EncodeUint(uint64(v))
  995. case uint64:
  996. e.e.EncodeUint(v)
  997. case float32:
  998. e.e.EncodeFloat32(v)
  999. case float64:
  1000. e.e.EncodeFloat64(v)
  1001. case []uint8:
  1002. e.e.EncodeStringBytes(c_RAW, v)
  1003. case *string:
  1004. e.e.EncodeString(c_UTF8, *v)
  1005. case *bool:
  1006. e.e.EncodeBool(*v)
  1007. case *int:
  1008. e.e.EncodeInt(int64(*v))
  1009. case *int8:
  1010. e.e.EncodeInt(int64(*v))
  1011. case *int16:
  1012. e.e.EncodeInt(int64(*v))
  1013. case *int32:
  1014. e.e.EncodeInt(int64(*v))
  1015. case *int64:
  1016. e.e.EncodeInt(*v)
  1017. case *uint:
  1018. e.e.EncodeUint(uint64(*v))
  1019. case *uint8:
  1020. e.e.EncodeUint(uint64(*v))
  1021. case *uint16:
  1022. e.e.EncodeUint(uint64(*v))
  1023. case *uint32:
  1024. e.e.EncodeUint(uint64(*v))
  1025. case *uint64:
  1026. e.e.EncodeUint(*v)
  1027. case *float32:
  1028. e.e.EncodeFloat32(*v)
  1029. case *float64:
  1030. e.e.EncodeFloat64(*v)
  1031. case *[]uint8:
  1032. e.e.EncodeStringBytes(c_RAW, *v)
  1033. default:
  1034. const checkCodecSelfer1 = true // in case T is passed, where *T is a Selfer, still checkCodecSelfer
  1035. if !fastpathEncodeTypeSwitch(iv, e) {
  1036. e.encodeI(iv, false, checkCodecSelfer1)
  1037. }
  1038. }
  1039. }
  1040. func (e *Encoder) preEncodeValue(rv reflect.Value) (rv2 reflect.Value, sptr uintptr, proceed bool) {
  1041. // use a goto statement instead of a recursive function for ptr/interface.
  1042. TOP:
  1043. switch rv.Kind() {
  1044. case reflect.Ptr:
  1045. if rv.IsNil() {
  1046. e.e.EncodeNil()
  1047. return
  1048. }
  1049. rv = rv.Elem()
  1050. if e.h.CheckCircularRef && rv.Kind() == reflect.Struct {
  1051. // TODO: Movable pointers will be an issue here. Future problem.
  1052. sptr = rv.UnsafeAddr()
  1053. break TOP
  1054. }
  1055. goto TOP
  1056. case reflect.Interface:
  1057. if rv.IsNil() {
  1058. e.e.EncodeNil()
  1059. return
  1060. }
  1061. rv = rv.Elem()
  1062. goto TOP
  1063. case reflect.Slice, reflect.Map:
  1064. if rv.IsNil() {
  1065. e.e.EncodeNil()
  1066. return
  1067. }
  1068. case reflect.Invalid, reflect.Func:
  1069. e.e.EncodeNil()
  1070. return
  1071. }
  1072. proceed = true
  1073. rv2 = rv
  1074. return
  1075. }
  1076. func (e *Encoder) doEncodeValue(rv reflect.Value, fn *encFn, sptr uintptr,
  1077. checkFastpath, checkCodecSelfer bool) {
  1078. if sptr != 0 {
  1079. if (&e.ci).add(sptr) {
  1080. e.errorf("circular reference found: # %d", sptr)
  1081. }
  1082. }
  1083. if fn == nil {
  1084. rt := rv.Type()
  1085. rtid := reflect.ValueOf(rt).Pointer()
  1086. fn = e.getEncFn(rtid, rt, true, true)
  1087. }
  1088. fn.f(&fn.i, rv)
  1089. if sptr != 0 {
  1090. (&e.ci).remove(sptr)
  1091. }
  1092. }
  1093. func (e *Encoder) encodeI(iv interface{}, checkFastpath, checkCodecSelfer bool) {
  1094. if rv, sptr, proceed := e.preEncodeValue(reflect.ValueOf(iv)); proceed {
  1095. e.doEncodeValue(rv, nil, sptr, checkFastpath, checkCodecSelfer)
  1096. }
  1097. }
  1098. func (e *Encoder) encodeValue(rv reflect.Value, fn *encFn) {
  1099. // if a valid fn is passed, it MUST BE for the dereferenced type of rv
  1100. if rv, sptr, proceed := e.preEncodeValue(rv); proceed {
  1101. e.doEncodeValue(rv, fn, sptr, true, true)
  1102. }
  1103. }
  1104. func (e *Encoder) getEncFn(rtid uintptr, rt reflect.Type, checkFastpath, checkCodecSelfer bool) (fn *encFn) {
  1105. // rtid := reflect.ValueOf(rt).Pointer()
  1106. var ok bool
  1107. if useMapForCodecCache {
  1108. fn, ok = e.f[rtid]
  1109. } else {
  1110. for i := range e.s {
  1111. v := &(e.s[i])
  1112. if v.rtid == rtid {
  1113. fn, ok = &(v.fn), true
  1114. break
  1115. }
  1116. }
  1117. }
  1118. if ok {
  1119. return
  1120. }
  1121. if useMapForCodecCache {
  1122. if e.f == nil {
  1123. e.f = make(map[uintptr]*encFn, initCollectionCap)
  1124. }
  1125. fn = new(encFn)
  1126. e.f[rtid] = fn
  1127. } else {
  1128. if e.s == nil {
  1129. e.s = make([]encRtidFn, 0, initCollectionCap)
  1130. }
  1131. e.s = append(e.s, encRtidFn{rtid: rtid})
  1132. fn = &(e.s[len(e.s)-1]).fn
  1133. }
  1134. ti := e.h.getTypeInfo(rtid, rt)
  1135. fi := &(fn.i)
  1136. fi.e = e
  1137. fi.ti = ti
  1138. if checkCodecSelfer && ti.cs {
  1139. fn.f = (*encFnInfo).selferMarshal
  1140. } else if rtid == rawExtTypId {
  1141. fn.f = (*encFnInfo).rawExt
  1142. } else if e.e.IsBuiltinType(rtid) {
  1143. fn.f = (*encFnInfo).builtin
  1144. } else if xfFn := e.h.getExt(rtid); xfFn != nil {
  1145. fi.xfTag, fi.xfFn = xfFn.tag, xfFn.ext
  1146. fn.f = (*encFnInfo).ext
  1147. } else if supportMarshalInterfaces && e.be && ti.bm {
  1148. fn.f = (*encFnInfo).binaryMarshal
  1149. } else if supportMarshalInterfaces && !e.be && e.js && ti.jm {
  1150. //If JSON, we should check JSONMarshal before textMarshal
  1151. fn.f = (*encFnInfo).jsonMarshal
  1152. } else if supportMarshalInterfaces && !e.be && ti.tm {
  1153. fn.f = (*encFnInfo).textMarshal
  1154. } else {
  1155. rk := rt.Kind()
  1156. if fastpathEnabled && checkFastpath && (rk == reflect.Map || rk == reflect.Slice) {
  1157. if rt.PkgPath() == "" {
  1158. if idx := fastpathAV.index(rtid); idx != -1 {
  1159. fn.f = fastpathAV[idx].encfn
  1160. }
  1161. } else {
  1162. ok = false
  1163. // use mapping for underlying type if there
  1164. var rtu reflect.Type
  1165. if rk == reflect.Map {
  1166. rtu = reflect.MapOf(rt.Key(), rt.Elem())
  1167. } else {
  1168. rtu = reflect.SliceOf(rt.Elem())
  1169. }
  1170. rtuid := reflect.ValueOf(rtu).Pointer()
  1171. if idx := fastpathAV.index(rtuid); idx != -1 {
  1172. xfnf := fastpathAV[idx].encfn
  1173. xrt := fastpathAV[idx].rt
  1174. fn.f = func(xf *encFnInfo, xrv reflect.Value) {
  1175. xfnf(xf, xrv.Convert(xrt))
  1176. }
  1177. }
  1178. }
  1179. }
  1180. if fn.f == nil {
  1181. switch rk {
  1182. case reflect.Bool:
  1183. fn.f = (*encFnInfo).kBool
  1184. case reflect.String:
  1185. fn.f = (*encFnInfo).kString
  1186. case reflect.Float64:
  1187. fn.f = (*encFnInfo).kFloat64
  1188. case reflect.Float32:
  1189. fn.f = (*encFnInfo).kFloat32
  1190. case reflect.Int, reflect.Int8, reflect.Int64, reflect.Int32, reflect.Int16:
  1191. fn.f = (*encFnInfo).kInt
  1192. case reflect.Uint8, reflect.Uint64, reflect.Uint, reflect.Uint32, reflect.Uint16, reflect.Uintptr:
  1193. fn.f = (*encFnInfo).kUint
  1194. case reflect.Invalid:
  1195. fn.f = (*encFnInfo).kInvalid
  1196. case reflect.Chan:
  1197. fi.seq = seqTypeChan
  1198. fn.f = (*encFnInfo).kSlice
  1199. case reflect.Slice:
  1200. fi.seq = seqTypeSlice
  1201. fn.f = (*encFnInfo).kSlice
  1202. case reflect.Array:
  1203. fi.seq = seqTypeArray
  1204. fn.f = (*encFnInfo).kSlice
  1205. case reflect.Struct:
  1206. fn.f = (*encFnInfo).kStruct
  1207. // reflect.Ptr and reflect.Interface are handled already by preEncodeValue
  1208. // case reflect.Ptr:
  1209. // fn.f = (*encFnInfo).kPtr
  1210. // case reflect.Interface:
  1211. // fn.f = (*encFnInfo).kInterface
  1212. case reflect.Map:
  1213. fn.f = (*encFnInfo).kMap
  1214. default:
  1215. fn.f = (*encFnInfo).kErr
  1216. }
  1217. }
  1218. }
  1219. return
  1220. }
  1221. func (e *Encoder) marshal(bs []byte, fnerr error, asis bool, c charEncoding) {
  1222. if fnerr != nil {
  1223. panic(fnerr)
  1224. }
  1225. if bs == nil {
  1226. e.e.EncodeNil()
  1227. } else if asis {
  1228. e.asis(bs)
  1229. } else {
  1230. e.e.EncodeStringBytes(c, bs)
  1231. }
  1232. }
  1233. func (e *Encoder) asis(v []byte) {
  1234. if e.as == nil {
  1235. e.w.writeb(v)
  1236. } else {
  1237. e.as.EncodeAsis(v)
  1238. }
  1239. }
  1240. func (e *Encoder) errorf(format string, params ...interface{}) {
  1241. err := fmt.Errorf(format, params...)
  1242. panic(err)
  1243. }
  1244. // ----------------------------------------
  1245. const encStructPoolLen = 5
  1246. // encStructPool is an array of sync.Pool.
  1247. // Each element of the array pools one of encStructPool(8|16|32|64).
  1248. // It allows the re-use of slices up to 64 in length.
  1249. // A performance cost of encoding structs was collecting
  1250. // which values were empty and should be omitted.
  1251. // We needed slices of reflect.Value and string to collect them.
  1252. // This shared pool reduces the amount of unnecessary creation we do.
  1253. // The cost is that of locking sometimes, but sync.Pool is efficient
  1254. // enough to reduce thread contention.
  1255. var encStructPool [encStructPoolLen]sync.Pool
  1256. func init() {
  1257. encStructPool[0].New = func() interface{} { return new([8]stringRv) }
  1258. encStructPool[1].New = func() interface{} { return new([16]stringRv) }
  1259. encStructPool[2].New = func() interface{} { return new([32]stringRv) }
  1260. encStructPool[3].New = func() interface{} { return new([64]stringRv) }
  1261. encStructPool[4].New = func() interface{} { return new([128]stringRv) }
  1262. }
  1263. func encStructPoolGet(newlen int) (p *sync.Pool, v interface{}, s []stringRv) {
  1264. // if encStructPoolLen != 5 { // constant chec, so removed at build time.
  1265. // panic(errors.New("encStructPoolLen must be equal to 4")) // defensive, in case it is changed
  1266. // }
  1267. // idxpool := newlen / 8
  1268. if newlen <= 8 {
  1269. p = &encStructPool[0]
  1270. v = p.Get()
  1271. s = v.(*[8]stringRv)[:newlen]
  1272. } else if newlen <= 16 {
  1273. p = &encStructPool[1]
  1274. v = p.Get()
  1275. s = v.(*[16]stringRv)[:newlen]
  1276. } else if newlen <= 32 {
  1277. p = &encStructPool[2]
  1278. v = p.Get()
  1279. s = v.(*[32]stringRv)[:newlen]
  1280. } else if newlen <= 64 {
  1281. p = &encStructPool[3]
  1282. v = p.Get()
  1283. s = v.(*[64]stringRv)[:newlen]
  1284. } else if newlen <= 128 {
  1285. p = &encStructPool[4]
  1286. v = p.Get()
  1287. s = v.(*[128]stringRv)[:newlen]
  1288. } else {
  1289. s = make([]stringRv, newlen)
  1290. }
  1291. return
  1292. }
  1293. // ----------------------------------------
  1294. // func encErr(format string, params ...interface{}) {
  1295. // doPanic(msgTagEnc, format, params...)
  1296. // }